Optimization of Sentiment Analysis for Amikom One Application Reviews Using SMOTE with Artificial Neural Network Algorithm

Hendra Halomoan Limbong, Norhikmah Norhikmah Norhikmah

Abstract


Sentiment analysis is a technique to decipher textual views and feelings. This study assesses a model's performance in sentiment analysis of Google Play Store reviews for the Amikom One app. With more unfavorable ratings, the primary problem is the imbalance in classes. It was done using the Synthetic Minority Over-sampling Technique (SMOTE) to remedy this. The techniques used are preprocessing the data, using SMOTE, and classifying sentiment using an artificial neural network (ANN). F1-score, recall, accuracy, and precision are used in the model evaluation process. The outcomes demonstrate a great degree of accuracy improvement in the ANN model's performance following the use of SMOTE. On training data, the model successfully classified sentiment reviews with 100% accuracy, while on test data, it achieved 93.44% accuracy. Sentiment research shows that 54.10 percent of the evaluations are favorable to the application, with 45.90% being critical. This study Artificial Neural Networks' (ANN) potential in sentiment analysis of mobile application reviews, offering developers with useful insights into how to enhance program quality using user feedback.

Full Text:

PDF

References


B. Mahesh, “Machine Learning Algorithms-A Review,” International Journal of Science and Research, 2018, doi: 10.21275/ART20203995.

N. Yusliani, Armenia Yuhafiz, Mastura Diana Marieska, and Alvi Syahrini Utami, “Analisis Sentimen di Twitter Menggunakan Algoritma Artificial Neural Network”, JUPITER, vol. 15, no. 1d, pp. 725–731, May 2023.

Darwis Alwan dan M. A. Ridla, “Averaged Word2vec sebagai Ekstraksi Fitur pada Analisis Sentimen Ulasan Film di IMDb menggunakan Artificial Neural Network (ANN),” JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), vol. 9, no. 1, hlm. 36–45, Feb 2024, doi: 10.32528/justindo.v9i1.1204.

S. Farah Aliyah, H. Yasin, B. Warsito, T. Widiharis, D. Statistika, dan F. Sains dan Matematika, “Analisis Sentimen PT Tiki Jalur Nugraha Ekakurir (Pt Tiki Jne) Pada Media Sosial Twitter Menggunakan Model Feed Forward Neural Network,” 2020.

J. Homepage, N. C. Agustina, D. Herlina Citra, W. Purnama, C. Nisa, dan A. Rozi Kurnia, “MALCOM: Indonesian Journal of Machine Learning and Computer Science The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” vol. 2, hlm. 47–54, 2022.

A. Nur Rahmi dan D. Prabowo, "Evaluasi Kepuasan Pengguna Aplikasi AMIKOM ONE Menggunakan Metode EUCS," INFOS Journal - Information System Journal, vol. 2, no. 1, 2019.

Ulfa Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita Online Pada Google Play menggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes”, explorit, vol. 14, no. 1, pp. 24-28, Jun. 2022.

S. Y. F. Noorihsan, N. Y. Setiawan, dan M. C. Saputra, "Analisis Sentimen Ulasan Google Review New Star Cineplex Pasuruan menggunakan Artificial Neural Network (ANN)," J-PTIIK, vol. 7, no. 2, hal. 564-573, Mar. 2023.

I. Najiyah, “Analisis Sentimen Tanggapan Masyarakat Indonesia Tentang Kenaikan BBM Menggunakan Metode Artificial Neural Network,” Jurnal Responsif, vol. 5, no. 1, hlm. 92–100, 2023, [Daring]. Tersedia pada: https://ejurnal.ars.ac.id/index.php/jti

Q. Bi, K. E. Goodman, J. Kaminsky, dan J. Lessler, “What is Machine Learning? A Primer For the Epidemiologist,” Am J Epidemiol, vol. 188, no. 12, hlm. 2222–2239, Des 2019, doi: 10.1093/aje/kwz189

R. M. A. Ikram, L. Goliatt, O. Kisi, S. Trajkovic, dan S. Shahid, “Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction,” Mathematics, vol. 10, no. 16, Agu 2022, doi: 10.3390/math10162971.

S. Fadhilah dan F. S. Utomo, "Naïve Bayes Algorithm for Sentiment Analysis of Blibli.com Review on Google Play Store," Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 2, hal. 831-840, 2024.

Z. Nawaz, C. Zhao, F. Nawaz, A. A. Safeer, dan W. Irshad, “Role of artificial neural networks techniques in development of market intelligence: a study of sentiment analysis of ewom of a women’s clothing company,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 16, no. 5, hlm. 1862–1876, Agu 2021, doi: 10.3390/jtaer16050104.

T. Astuti dan I. Pratika, “Product Review Sentiment Analysis by Artificial Neural Network Algorithm,” International Journal of Informatics and Information Systems, vol. 2, no. 2, hlm. 61–66, 2019.

A. Pertiwi, A. Triayudi, and E. T. E. Handayani, “Sentiment Analysis of the Impact of Covid-19 on Indonesia’s Economy through Social Media Using the ANN Method: Sentiment Analysis of the Impact of Covid-19 on Indonesia’s Economy through Social Media Using the ANN Method”, Mantik, vol. 4, no. 1, pp. 605-612, May 2020.

F. Yulian Pamuji, “Pengujian Metode SMOTE Untuk Penanganan Data Tidak Seimbang pada Dataset Binary,” Seminar Nasional Sistem Informasi, vol. 2022, 2022.

N. Putu Gita Naraswati, D. Cindy Rosmilda, D. Desinta, F. Khairi, R. Damaiyanti, and R. Nooraeni, “SISTEMASI: Jurnal Sistem Informasi Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification.” [Online]. Available: http://sistemasi.ftik.unisi.ac.id.

Nugroho, A., and N. Norhikmah, "Sentiment Analysis using the Support Vector Machine Algorithm on Covid_19," Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 4, pp. 1758-1772, 2024, doi: 10.32520/stmsi.v13i4.3778.




DOI: https://doi.org/10.32520/stmsi.v13i5.4437

Article Metrics

Abstract view : 33 times
PDF - 26 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.