Implementation of the Support Vector Machine (SVM) Algorithm on Sentiment Analysis of Public Opinion on The Prohibition of the use of Syrupy Drugs for Kidney Health

Galih Purnomo, Rumini Rumini, Tri Susanto

Abstract


In 2022, the Indonesian Ministry of Health reported several cases of pediatric acute renal failure (GGAPA), which resulted in a mortality rate of 59%, mainly among children aged between 1-5 years. The main causes were identified by Health Minister Budi Gunadi Sadikin as the three solvents ethylene glycol (EG), diethylene glycol (DEG), and ethylene glycol butyl ether (EGBE). In response, the government implemented restrictions on the consumption of these condensed substances, which led to mixed public reactions observed in the YouTube comments section. The purpose of this study is to evaluate public opinions on the syrup ban for kidney health. The comments will be classified using the Support Vector Machine (SVM) method, and the most effective kernel among linear, sigmoid, polynomial, and RBF will be identified. Data was collected through web scraping with 5000 initial data, and after preprocessing, 4794 data were processed. The analysis results show that the linear kernel has the highest accuracy of 75.63%, followed by the sigmoid kernel 75.29%, RBF 74.79%, and polynomial 71.09%. While the K-Fold Cross Validation test with a value of k = 10, produced a value of 74.64% for the linear kernel. This research concludes that the Support Vector Machine (SVM) algorithm with a linear kernel achieves the highest accuracy in sentiment analysis.

Full Text:

PDF

References


A. Putri Riani, N. Sulistyowati, T. Ridwan, and A. Voutama, “METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi,” vol. 7, no. 2, 2023, doi: 10.46880/jmika.Vol7No2.pp325-339.

Diva Lufiana Putri and Sari Hardiyanto, “3 Zat Berbahaya Temuan Kemenkes pada Pasien Gagal Ginjal Akut, Apa Saja?,” Kompas. Accessed: May 28, 2024. [Online]. Available: https://www.kompas.com/tren/read/2022/10/20/132900065/3-zat-berbahaya-temuan-kemenkes-pada-pasien-gagal-ginjal-akut-apa-saja-?page=all

Fitri Wulandari, Elin Haerani, Muhammad Fikry, and Elvia Budianita, “Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 4, no. 1, pp. 88–96, May 2023, doi: 10.37859/coscitech.v4i1.4781.

Irham Zharfan and Ferlangga, “Youtube Jadi Raja Media Sosial Di Indonesia, Diakses 94 Persen Warga ,” Binus. Accessed: May 28, 2024. [Online]. Available: https://student-activity.binus.ac.id/himti/2022/08/25/youtube-jadi-raja-media-sosial-di-indonesia-diakses-94-persen-warga/

T. M. Tinambunan and C. Siahaan, “Tresia Monica Tinambunan, dan Chontina Siahaan Pemanfaatan Youtube Sebagai Media Komunikasi Massa Di Kalangan Pelajar,” 2022. [Online]. Available: www.youtube.com

Z. Nanda Aulia, G. Kuncoro Jati, and I. Santoso, “Analisis Sentimen Tanggapanpublic Mengenai E-Tilang Melalui Media Sosial Youtube Menggunakan Algoritma Naive Bayes,” Feb. 2023. [Online]. Available: https://journals.upi-yai.ac.id/index.php/ikraith-informatika/issue/archive

O. I. Gifari, M. Adha, I. Rifky Hendrawan, F. Freddy, and S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” JIFOTECH (Journal Of Information Technology, vol. 2, no. 1, 2022.

E. Fitri, Y. Yuliani, S. Rosyida, and W. Gata, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” TRANSFORMTIKA, vol. 18, no. 1, pp. 71–80, 2020, [Online]. Available: www.nusamandiri.ac.id,

M. Samantri, “Perbandingan Algoritma Support Vector Machine dan Random Forest untuk Analisis Sentimen Terhadap Kebijakan Pemerintah Indonesia Terkait Kenaikan Harga BBM Tahun 2022,” Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, p. 2024, 2024, doi: 10.35870/jti.

T. Aura Azzahra et al., “Jurnal Media Informatika Budidarma Perbandingan Efektivitas Naïve Bayes dan SVM dalam Menganalisis Sentimen Kebencanaan di Youtube,” 2024, doi: 10.30865/mib.v8i1.7186.

D. R. Manalu, M. C. L. Tobing, and M. Yohanna, “Analisis Sentimen Twitter Terhadap Wacana Penundaan Pemilu Dengan Metode Support Vector Machine,” METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi, vol. 6, no. 6, pp. 149–156, Oct. 2022, doi: 10.46880/jmika.Vol6No2.pp149-156.

M. Hafizh Mahendra, D. Triantoro Murdiansyah, and K. Muslim Lhaksmana, “Dike : Jurnal Ilmu Multidisiplin Analisis Sentimen Tweet COVID-19 Menggunakan Metode K-Nearest Neighbors dengan Ekstraksi Fitur TF-IDF dan CountVectorizer,” 2023.

P. Widyantara et al., “Analisis Sentimen pada Teks Berbahasa Bali Menggunakan Metode Multinomial Naive Bayes dengan TF-IDF dan BoW,” JNATIA, vol. 2, no. 1, 2023.

A. A. Nurkhaliza and A. W. Wijayanto, “Perbandingan Algoritma Klasifikasi Support Vector Machine dan Random Forest pada Prediksi Status Indeks Mitigasi dan Kesiapsiagaan Bencana (IMKB) Satuan Kerja BPS di Indonesia Tahun 2020,” Jurnal Informatika Universitas Pamulang , vol. 7, no. 1, pp. 2622–4615, 2022, doi: 10.32493/informatika.v7i1.16117.

M. Raffi, A. Suharso, and I. Maulana, “Analisis Sentimen Ulasan Aplikasi Binar Pada Google Play Store Menggunakan Algoritma Naïve Bayes Sentiment Analysis Of Binar Application Reviews On Google Play Store Using Naïve Bayes Algorithm,” Journal of Information Technology and Computer Science (INTECOMS), vol. 6, no. 1, 2023.

S. Alpin Rizaldi, S. Alam, and I. Kurniawan, “Analisis Sentimen Pengguna Aplikasi Jmo (Jamsostek Mobile) Pada Google Play Store Menggunakan Metode Naive Bayes 1),” vol. 2, no. 3, pp. 109–117, 2023, doi: 10.55123.

Y. Widyaningsih, G. P. Arum, and K. Prawira, “Aplikasi K-Fold Cross Validation Dalam Penentuan Model Regresi Binomial Negatif Terbaik,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 2, pp. 315–322, Jun. 2021, doi: 10.30598/barekengvol15iss2pp315-322.

Nugroho, Adytyo Wahyu. Dan Norhikmah., 2024. “Analisis Sentimen menggunakan Algoritma Support Vector Machine pada Covid_19, Jurnal SISTEMASI : Jurnal Sistem Informasi Volume 13, No. 4, 2024, ISSN:2302-8149.




DOI: https://doi.org/10.32520/stmsi.v13i6.4444

Article Metrics

Abstract view : 49 times
PDF - 33 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.