Sentiment Analysis of Sunscreen Product Reviews using Naive Bayes Classifier Algorithm

Mutia Zahirma, Rumini Rumini

Abstract


The advancement of information and communication technology has transformed consumer interactions with products and brands, especially in the beauty industry. This study focuses on sentiment analysis of sunscreen product reviews using the Naive Bayes Classifier method. Review data for the Wardah UV Shield Essential Sunscreen Gel SPF 35 PA+++ were collected through web scraping from the Femaledaily website, resulting in 1,451 data entries. The data were labeled as positive or negative based on ratings and then processed through data cleaning, case folding, stopword removal, and tokenization. The processed data were converted into numerical representations using TF-IDF. The Naive Bayes Classifier model built for this study achieved an accuracy of 79%, precision of 67%, recall of 64%, and an F1-score of 65%. A word cloud visualization highlighted frequently occurring words in both positive and negative reviews. This study demonstrates that the Naive Bayes Classifier method is effective for classifying sentiments in sunscreen product reviews. Although this method is easy to implement and understand, it has limitations due to the assumption of word independence and the imbalance between positive and negative reviews. Future research is expected to expand the dataset and explore other sentiment analysis methods to improve accuracy.

Keywords


sunscreen, wardah, sentiment analysis, consumer reviews, naive bayes classifier

Full Text:

PDF

References


M. N. Aini, R. Yulfani, dan N. Jariah, "Application of the Naive Bayes Method for Sentiment Analysis of Sunscreen Product Reviews Based on the Female Daily Review," Jatilima: Jurnal Multimedia Dan Teknologi Informasi, vol. 06, no. 01, 2024. doi: https://doi.org/10.54209/jatilima.v6i01.421.

T. Astuti dan Y. Astuti, "Analisis Sentimen Review Produk Skincare dengan Naïve Bayes Classifier berbasis Particle Swarm Optimization (PSO)," Jurnal Media Informatika Budidarma, vol. 6, no. 4, pp. 1806-1815, Okt. 2022. doi: 10.30865/mib.v6i4.4119.

C. H. Yutika, Adiwijaya, dan S. Al Faraby, "Analisis Sentimen berbasis Aspek pada Review Female Daily menggunakan TF-IDF dan Naïve Bayes," Jurnal Media Informatika Budidarma, vol. 5, no. 2, pp. 422-430, Apr. 2021. doi: 10.30865/mib.v5i2.2845.

F. Latief dan N. Ayustira, "Pengaruh Online Customer Review dan Customer Rating terhadap Keputusan Pembelian Produk Kosmetik di Sociolla," Jurnal Mirai Management Terakreditasi Nasional, vol. 6, no. 1, 2020. [Online]. Available: https://journal.stieamkop.ac.id/index.php/mirai.

M. Hamka, N. Alfatari, dan D. R. Sari, "Analisis Sentimen Produk Kecantikan Jenis Serum menggunakan Algoritma Naïve Bayes Classifier," Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 1, pp. 64-71, Sep. 2022. doi: 10.30865/json.v4i1.4740.

N. Muslimah dan A. Sutikno, "Analisis Sentimen Komentar Netizen pada Brand Skincare the Originote menggunakan Metode Naïve Bayes," CENTIVE, vol. 3, no. 1, pp. 826-835, Okt. 2023. [Online]. Available: https://journal.cattleyadf.org/index.php/jatilima/index.

K. S. Putri, I. R. Setiawan, dan A. Pambudi, "Analisis Sentimen terhadap Brand Skincare Lokal menggunakan Naïve Bayes Classifier," Technologia, vol. 14, no. 3, pp. 227, Jul. 2023. [Online]. Available: https://journal.stieamkop.ac.id/index.php/mirai.

D. A. WP, J. D. Firizqi, dan Z. A. Amalia, "Analisis Sentimen Produk Skincare Somethinc Niacinamide di Female Daily dengan Naïve Bayes Classifier," Jurnal Media Informatika Budidarma, vol. 8, no. 2, pp. 946-956, Apr. 2024. doi: 10.30865/mib.v8i2.7571.

S. Masripah dan D. A. N. Wulandari, "Analisa Online Customer Review (OCR) menggunakan Algoritma Naive Bayes berbasis Particial Swarm Optimization (PSO)," Jurnal Infortech, vol. 6, no. 1, Juni 2024. [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/mib.

D. Amalia, M. H. Totohendarto, dan S. Alam, "Analisis Sentimen Produk Populer Moisturizer pada Female Daily menggunakan Metode Naive Bayes," Informatics for Educators And Professionals: Journal of Informatics, vol. 8, no. 2, pp. 108-121, Des. 2023. [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/mib.

E. Indrayuni, "Klasifikasi Text Mining Review Produk Kosmetik untuk Teks Bahasa Indonesia menggunakan Algoritma Naive Bayes," Jurnal Khatulistiwa Informatika, vol. VII, no. 1, pp. 1-10, Jun. 2019. [Online]. Available: p-ISSN: 2339-1928, e-ISSN: 2579-633X.

M. K. A. Fath, A. Arini, and N. Hakiem, "Sentiment Analysis Of Full Day School Policy Comment using Naïve Bayes Classifier Algorithm," Sinkron: Jurnal dan Penelitian Teknik Informatika, vol. 5, no. 1, pp. 1-12, Oct. 2020. [Online]. Available: DOI: https://doi.org/10.33395/sinkron.v5i1.10564, e-ISSN: 2541-2019, p-ISSN: 2541-044X.

C. F. Hasri and D. Alita, "Penerapan Metode Naïve Bayes Classifier dan Support Vector Machine pada Analisis Sentimen terhadap Dampak Virus Corona di Twitter," Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 145-160, Jun. 2022. [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika, ISSN 2723-3367.

R. C. Larasati, C. Dewi, and H. J. Christanto, "Analisis Sentimen Produk Kecantikan Jenis Moisturizer di Twitter menggunakan Algoritma Super Vector Machine," Jurnal TEKINKOM, vol. 7, no. 1, pp. 1-12, Jun. 2024. [Online]. Available: DOI: 10.37600/tekinkom.v7i1.1243, e-ISSN: 2621-3079, ISSN: 2621-1556.

A. F. Setyaningsih, D. Septiyani, and S. R. Widiasari, "Implementasi Algoritma Naïve Bayes untuk Analisis Sentimen Masyarakat pada Twitter mengenai Kepopuleran Produk Skincare di Indonesia," Jurnal Teknologi Informatika dan Komputer MH. Thamrin, vol. 9, no. 1, pp. 1-12, Mar. 2023.

D. M. Azzahra, M. H. T., and S. Alam, "Analisis Sentimen Ulasan Produk Serum Wajah pada Beauty Brand Somethinc menggunakan Metode Naïve Bayes Classifier," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, pp. 1-10, Jun. 2023.

A. W. Attabi’, L. Muflikhah, and M. A. Fauzi, "Penerapan Analisis Sentimen untuk Menilai Suatu Produk pada Twitter Berbahasa Indonesia dengan Metode Naïve Bayes Classifier dan Information Gain," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 11, pp. 4548-4554, Nov. 2018. [Online]. Available: http://j-ptiik.ub.ac.id, e-ISSN: 2548-964X




DOI: https://doi.org/10.32520/stmsi.v14i1.4454

Article Metrics

Abstract view : 55 times
PDF - 19 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.