Mapping of Flood and Landslide Prone Areas using Composite Mapping Analysis Method Based on Geographic Information System in East Aceh

Maya Maulita, Nurdin Nurdin, Taufiq Taufiq

Abstract


Disaster is an event that causes great losses to the community. Disasters are destructive, very detrimental, and require a long time to recover. To overcome the impact of natural disasters on the community in East Aceh Regency, research is needed related to the mapping system for multi-disaster prone areas (floods and landslides) in East Aceh Regency. The application used for the mapping process is ArcGIS Desktop and the research methodology used for mapping is Composite Mapping Analysis which consists of the process of determining the class of each parameter, determining the weight of each parameter by combining each parameter. The method of combining them consists of a scoring process for each parameter, then overlaying the parameters used, calculating and producing relative weights or spatial means, and combining spatial means to produce a value from the weight of each parameter for floods and landslides. The results of the study showed that the percentage of area for the class very prone to flood disasters was 232,156.13 Ha (42.3%), the vulnerable class had an area of 228,634.01 Ha (41.7%), and the non-vulnerable class had an area of 87,687.40 Ha (16%). The percentage of area for the class that is very vulnerable to landslides is 49,998.13 Ha (9.5%), the vulnerable class has an area of 301,863.93 Ha (57.2%), and the non-vulnerable class has an area of 175,542.56 Ha (33.3%). The contribution of this research is to provide information on disaster-prone areas, causal factors, characteristics of vulnerability to natural disasters such as floods and landslides and provide a basis for more effective decision-making in disaster mitigation and management efforts. This approach offers a new contribution to the technology of mapping and classifying disaster-prone areas.

Full Text:

PDF

References


K. Uddin and M. A. Matin, “Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology,” Progress in disaster science, vol. 11, p. 100185, 2021.

K. Fujita and R. Shaw, “Preparing International Joint Project: use of Japanese flood hazard map in Bangladesh,” International Journal of Disaster Risk Management, vol. 1, no. 1, pp. 62–80, 2019.

J. A. Marengo et al., “Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts,” Frontiers in Water, vol. 3, no. February, 2021, doi: 10.3389/frwa.2021.639204.

K. V. D. Edirisooriya, N. S. Vitanage, P. Uluwaduge, and E. M. T. K. Senevirathna, “Understanding Disaster Risk and Mitigation Special Reference to Ratnapura District,” Procedia Eng, vol. 212, pp. 1034–1039, 2018, doi: 10.1016/j.proeng.2018.01.133.

N. Nocentini, A. Rosi, L. Piciullo, Z. Liu, S. Segoni, and R. Fanti, “Regional-scale spatiotemporal landslide probability assessment through machine learning and potential applications for operational warning systems: a case study in Kvam (Norway),” Landslides, no. November 2023, 2024, doi: 10.1007/s10346-024-02287-9.

Ashagre, H. M., Hatiye, S. D. and Goshime, D. W., (2023). A Pragmatic Approach to the Combined Effect of Climate Change and Water Abstraction on Lake Ziway Water Balance, Ethiopia. Journal of Water and Climate Change, Vol. 14(1), 83–103. https://doi.org/10 .2166/wcc.2022.201.

Liu, C. and Li, Y., (2017). GIS-based Dynamic Modelling and Analysis of Flash Floods Considering Land-Use Planning. International Journal of Geographical Information Science, Vol. 31(3). 481–498. https://doi.org/10.1080/ 13658816.2016.1207774.

Taufik, M. and Rahman, I. W., (2019). Pemetaan Daerah Rawan Banjir (Studi Kasus: Banjir Pacitan Desember 2017). Geoid, Vol. 15(1). 12–19. http://dx.doi.org/10.12962/j244 23998.v15i1.38.

Jayawardena, A. W., (2015). Hydro-Meteorological Disasters: Causes, Effects and Mitigation Measures with Special Reference to Early Warning with Data Driven Approaches of Forecasting. Procedia IUTAM, 3 – 12. 2015. https://doi.org/10.1016/j.piutam.2015.06.003.

Dwivedi, S. K., Chandra, N., Bahuguna, S., Pandey, A., Khanduri, S. and Lingwal, S., (2022). Hydrometeorological Disaster Risk Assessment in Upper Gori-Ramganga Catchment, Uttarakhand, India. Geocarto Int, Vol. 37(26), 11998-12013. https://doi.org/10.10 80/10106049.2022.2063403.

F. Huang, J. Chen, Z. Du, C. Yao, J. Huang, and Q. Jiang, “Huang, F., Chen, J., Du, Z., Yao, C., Huang, J., Jiang, Q., ... & Li, S. (2020). Landslide susceptibility prediction considering regional soil erosion based on machine-learning models. ISPRS International J.pdf,” ISPRS International J, p. 24, 2020.

Y. Li, J. Huang, S.-H. Jiang, F. Huang, and Z. Chang, “A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide,” Sci Rep, vol. 7, no. 1, p. 17171, 2017.

A. Dikshit, R. Sarkar, B. Pradhan, S. Segoni, and A. M. Alamri, “Rainfall induced landslide studies in Indian Himalayan region: a critical review,” Applied Sciences, vol. 10, no. 7, p. 2466, 2020.

M. J. Froude and D. N. Petley, “Global fatal landslide occurrence from 2004 to 2016,” Natural Hazards and Earth System Sciences, vol. 18, no. 8, pp. 2161–2181, 2018.

F. Huang, Y. Wang, Z. Dong, L. Wu, Z. Guo, and T. Zhang, “Regional landslide susceptibility mapping based on grey relational degree model,” Earth Sci, vol. 44, no. 2, pp. 664–676, 2019.

K. Ben Sim, M. L. Lee, and S. Y. Wong, “A review of landslide acceptable risk and tolerable risk,” Geoenvironmental Disasters, vol. 9, no. 1, 2022, doi: 10.1186/s40677-022-00205-6.

M. G. Winter, D. Peeling, D. Palmer, and J. Peeling, “Economic impacts of landslides and floods on a road network,” Auc Geographica, vol. 54, no. 2, pp. 207–220, 2019.

N. Casagli, E. Intrieri, V. Tofani, G. Gigli, and F. Raspini, “Landslide detection, monitoring and prediction with remote-sensing techniques,” Nat Rev Earth Environ, vol. 4, no. 1, pp. 51–64, 2023.

Y. H. Chrisnanto, F. Renaldi, N. Z. Afsyari, and A. I. Hadiana, “GIS-based ranking and categorization of potential impact on drought as disaster mitigation effort in Bandung Barat Regency (KBB) using Simple Additive Weighting (SAW),” IOP Conf Ser Mater Sci Eng, vol. 1098, no. 3, p. 32043, 2021, doi: 10.1088/1757-899x/1098/3/032043.

K. Muttaqin, M. Maulita, L. Fitria, A. Ihsan, and R. Mulya, “Mapping Flood-Prone Areas Based Geographic Information System Using Composite Mapping Analysis,” International Journal of Geoinformatics, 2023, doi: 10.52939/ijg.v19i12.2983.

A. T. Ujung and H. S. F. , Arief Laila Nugraha, “Kajian Pemetaan Risiko Bencana Banjir Kota Semarang Dengan Menggunakan Sistem Informasi Geografis,” J. Geod. Undip, vol. 8, no. 4, pp. 154–164, 2019..

N. Fauziah, “Menggunakan Metode Composite Mapping Analysis (CMA) ( Studi Kasus : Kabupaten Madiun),” Thesis, Institut Teknologi Sepuluh November, 2020.

Nurdin, Taufiq, Fajriana, and M. Z. Ulhaq, “Mapping System Model and Clustering of Fishery Products using K- Means Algorithm with Web GIS Approach,” International Journal of Intelligent Systems and Applications in Engineering, vol. 11, no. 3, pp. 738–749, 2023.

S. I. Mohd Shariffuddin and W. Sofia Udin, “Landslide Susceptibility Assessment Using Geographic Information System (GIS) Application of Putat Area, Gunungkidul, Yogyakarta, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 596, no. 1, 2020, doi: 10.1088/1755-1315/596/1/012055.

A. R. M. Amen, A. Mustafa, D. A. Kareem, H. M. Hameed, A. A. Mirza, M. Szydłowski and B. K. Bala, “Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq,” Remote Sens., vol. 15, no. 4, 2023, doi: 10.3390/rs15041102.

M. Alwi, A. W. N. Maharti, A. Rakhmadini, and D. Prastiyawan, “Pemetaan multi rawan bencana longsor, kekeringan, dan banjir di Kabupeten Semarang,” Maj. Geogr. Indones., vol. 36, no. 1, pp. 19–31, 2022, doi: 10.22146/mgi.63231.

E. H. Ighile, H. Shirakawa, and H. Tanikawa, “A Study on the Application of GIS and Machine Learning to Predict Flood Areas in Nigeria,” Sustain., vol. 14, no. 9, 2022, doi: 10.3390/su14095039.

M. Maulita and N. Nurdin, “Pendekatan Data Mining Untuk Analisa Curah Hujan Menggunakan Metode Regresi Linear Berganda (Studi Kasus: Kabupaten Aceh Utara),” IDEALIS Indones. J. Inf. Syst., vol. 6, no. 2, pp. 99–106, 2023, doi: 10.36080/idealis.v6i2.3034..

N. Nurdin, U. M. Putri Nasution, H. A.-K. Aidilof, and B. Bustami, “Implementation of Fuzzy C-Means to Determine Student Satisfaction Levels in Online Learning,” Sistemasi, vol. 11, no. 1, pp. 121-136, 2022, doi: 10.32520/stmsi.v11i1.1638.

R. D. Rasyada, N. Nurdin, and F. Fajriana, “Application of the Profile Matching Analysis Method in Decision Support Systems for Study Program Recommendations,” Sistemasi, vol. 13, no. 1, pp. 83-95, 2024, doi: 10.32520/stmsi.v13i1.3161.

N. Nurdin, A. Darmansyah, and F. Fajriana, “Aplikasi Pemetaan Lokasi Distribusi Gas Elpiji 3 Kg Menggunakan Algoritma Ant Colony Berbasis Android”, Jurnal CoreIT, vol.6, no.1, pp. 30-36, 2020.




DOI: https://doi.org/10.32520/stmsi.v13i6.4483

Article Metrics

Abstract view : 26 times
PDF - 20 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.