The Best Tourism Recommendation Intelligent System Model: Weighted Product and K-Means Methods

Kanafi Kanafi, Mira Fitriana

Abstract


Magelang Regency, with a wealth of tourist destinations with a variety of things, such as Borobudur Temple and Nepal Van Java, has extraordinary tourism potential. With this diversity, it is a challenge for tourists to determine the best tourist objects that suit their preferences. This study aims to develop an intelligent system for recommending the selection of the best tourist attractions in Magelang Regency by integrating the Weighted Product and K-Means Clustering Methods. The system is designed to provide accurate recommendations based on tourist criteria such as location, facilities, tickets, and security, as well as group attractions based on their level of potential. The Weighted Product method is used to determine the best tourist attractions, while K-Means Clustering groups tourist destinations into high, medium, and low potential categories. In this study, several stages were carried out: literature study, data collection, system design, data analysis, implementation, and system testing to produce an effective and efficient recommendation system for tourists in Magelang Regency. The results of this research obtained the best tourism, namely at Borobudur Temple.

Full Text:

PDF

References


D. S. N. Hadi, W. Raharjo, and R. B. N. Azizah, “Interaksionisme Simbolik Dalam Genius Loci Kawasan Pecinan Sebagai Potensi Wisata Budaya Dan Maknanya Bagi Kota Magelang,” Jurnal Analisa Sosiologi, vol. 11, no. 2, pp. 251–268, 2022, doi: 10.20961/jas.v11i2.57622.

K. P. Dewi and R. R. Sugiharti, “Jurnal Paradigma Multidisipliner (JPM) ANALISIS PENGEMBANGAN POTENSI WISATA SEJARAH DI KOTA MAGELANG,” Jurnal Paradigma Multidisipliner (JPM), vol. 3, no. 1, pp. 14–21, 2022.

B. Prasetyo, W. Hidayat, and N. Ngatno, “Pengaruh Fasilitas dan Electronic Word Of Mouth terhadap Keputusan Berkunjung Wisatawan di Objek Wisata Taman Kyai Langgeng Kota Magelang,” Jurnal Ilmu Administrasi Bisnis, vol. 11, no. 2, pp. 134–141, 2022, doi: 10.14710/jiab.2022.34132.

I. Khatri, “Information Technology in Tourism & Hospitality Industry: A Review of Ten Years’ Publications,” Journal of Tourism and Hospitality Education, vol. 9, no. April, pp. 74–87, 2019, doi: 10.3126/jthe.v9i0.23682.

H. Pechlaner and M. Raich, “The Role of Information Technology in the Information Process for Cultural Products and Services in Tourism Destinations,” Information Technology & Tourism, vol. 4, no. 2, pp. 91–106, 2012, doi: 10.3727/109830501108750912.

S. S. Putro, E. M. Rochman, and A. Rachmad, “The Determination of A Place of Popular Tourism on The Island of Madura Using Weighted Product (WP),” Elinvo (Electronics, Informatics, and Vocational Education), vol. 8, no. 2, pp. 214–220, 2024, doi: 10.21831/elinvo.v8i2.55693.

Z. Abbasi-Moud, H. Vahdat-Nejad, and J. Sadri, “Tourism recommendation system based on semantic clustering and sentiment analysis,” Expert Systems with Applications, vol. 167, p. 114324, 2021, doi: 10.1016/j.eswa.2020.114324.

J. J. Yang, H. W. Lo, C. S. Chao, C. C. Shen, and C. C. Yang, “Establishing a sustainable sports tourism evaluation framework with a hybrid multi-criteria decision-making model to explore potential sports tourism attractions in Taiwan,” Sustainability (Switzerland), vol. 12, no. 4, pp. 1–20, 2020, doi: 10.3390/su12041673.

A. K. Wardhani and A. Anindyaputri, “Sistem Informasi Pemilihan Tempat Wisata Menggunakan Metode Weighted Product,” Indonesian Journal of Technology, Informatics and Science (IJTIS), vol. 2, no. 1, pp. 27–32, 2020, doi: 10.24176/ijtis.v2i1.5649.

M. V. Overbeek and R. N. Naatonis, “Sistem Rekomendasi Destinasi Wisata Di Kota Kupang Dengan Metode Weighted Product,” High Education of Organization Archive Quality: Jurnal Teknologi Informasi, vol. 10, no. 1, pp. 30–34, 2018, doi: 10.52972/hoaq.vol10no1.p30-34.

A. Jauhari, D. R. Anamisa, and F. A. Mufarroha, “Analysis of Clusters Number Effect Based on K-Means Method for Tourist Attractions Segmentation,” Journal of Physics: Conference Series, vol. 2406, no. 1, 2022, doi: 10.1088/1742-6596/2406/1/012024.

B. M. Al-Fahmi, E. Rahmawati, and T. Sagirani, “Penerapan K-Means Clustering Pada Pariwisata Kabupaten Bojonegoro Untuk Mendukung Keputusan Strategi Pemasaran,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 9, no. 2, pp. 141–149, 2023, doi: 10.25077/teknosi.v9i2.2023.141-149.

D. Astuti, Kanafi, M. S. Riza Eko, and Kursini, “Implementasi Weighted Product Dalam Pemilihan Konsentrasi Prodi Teknik Informatika Perguruan Tinggi,” Informa, vol. 5, no. 1, pp. 2442–7942, 2019.

S. Chaudhary, A. Kumar, M. Pramanik, and M. S. Negi, Land evaluation and sustainable development of ecotourism in the Garhwal Himalayan region using geospatial technology and analytical hierarchy process, vol. 24, no. 2. Springer Netherlands, 2022. doi: 10.1007/s10668-021-01528-4.

D. K. Pramudito, N. Ahmad, R. Suwanda, M. Zakaria, and L. Judijanto, “Designing an E-Recruitment Information System Using Simple Additive Weighting Method for Employee Recruitment in Banking Industry,” Jurnal Informasi dan Teknologi, vol. 5, no. 4, pp. 19–25, 2023, doi: 10.60083/jidt.v5i4.411.

S. Gupta, B. Jha, and R. K. Singh, “Decision making framework for foreign direct investment: Analytic hierarchy process and weighted aggregated sum product assessment integrated approach,” Journal of Public Affairs, vol. 22, no. S1, pp. 1–18, 2022, doi: 10.1002/pa.2771.

M. Şahin, “A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy,” International Journal of Environmental Science and Technology, vol. 18, no. 6, pp. 1591–1616, 2021, doi: 10.1007/s13762-020-02922-7.

O. Ghorbanzadeh, S. Pourmoradian, T. Blaschke, and B. Feizizadeh, “Mapping potential nature-based tourism areas by applying GIS-decision making systems in East Azerbaijan Province, Iran,” Journal of Ecotourism, vol. 18, no. 3, pp. 261–283, 2019, doi: 10.1080/14724049.2019.1597876.

A. D. Afrizal, N. A. Rakhmawati, and A. Tjahyanto, “New filtering scheme based on term weighting to improve object based opinion mining on tourism product reviews,” Procedia Computer Science, vol. 161, pp. 805–812, 2019, doi: 10.1016/j.procs.2019.11.186.

L. Crielaard, J. F. Uleman, B. D. L. Châtel, S. Epskamp, P. M. A. Sloot, and R. Quax, Refining the Causal Loop Diagram: A Tutorial for Maximizing the Contribution of Domain Expertise in Computational System Dynamics Modeling, vol. 29, no. 1. 2022. doi: 10.1037/met0000484.

T. H. E. Implementation, O. F. Information, and T. On, “Global Conference on Business and Management ( GCBM ),” vol. 1, no. 1, p. 2021, 2021.

R. Putter, A. Neubohn, A. Leschke, and R. Lachmayer, “Predictive Vehicle Safety—Validation Strategy of a Perception-Based Crash Severity Prediction Function,” Applied Sciences (Switzerland), vol. 13, no. 11, 2023, doi: 10.3390/app13116750.

A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” Jurnal Media Informatika Budidarma, vol. 4, no. 1, p. 51, 2020, doi: 10.30865/mib.v4i1.1784.

E. K. Sihite, Y. M. Rangkuti, and I. K. Karo, “Pembangunan Webgis Untuk Penderita Gizi Buruk Di Kota Medan Berdasarkan Hasil Clustering Algoritma DBSCAN,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 23, no. 1, p. 77, 2024, doi: 10.53513/jis.v23i1.9528.

W. G. S. Parwita, “Pengujian Akurasi Sistem Rekomendasi Berbasis Content-Based Filtering,” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 14, no. 1, p. 27, 2019, doi: 10.30872/jim.v14i1.1272.




DOI: https://doi.org/10.32520/stmsi.v13i5.4514

Article Metrics

Abstract view : 28 times
PDF - 4 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.