Optimization of K-Means Clustering Method for Drug Grouping at Mertoyudan I Health Center, Magelang

Dwi Astuti, Muqorobin Muqorobin

Abstract


Health centers as health service providers have an important role in ensuring adequate drug availability for the community. However, drug management in health centers often faces obstacles, including the use of manual methods in stock monitoring, which can lead to unavailability or accumulation of unused drugs. This study aims to improve the efficiency of drug management in health centers through the application of the K-Means Clustering method. This method is used to group drug stocks into three main clusters: heavy drugs, moderate drugs, and light drugs. With this grouping, it is expected that pharmacists can more easily determine the type of drug, monitor drug availability in a timely manner, and manage drug procurement according to patient needs. Research methods include literature studies, data collection and analysis, system modeling design, and system testing and evaluation. The results of this study are expected to improve the efficiency of drug management in health centers, so that health services to the community can be more optimal. The results of testing using the Silhouette Coefficient (SC) method produced an average SC of 0.97 which means strong structure, so it can be concluded that it has a strong structure.

Full Text:

PDF

References


Z. A. Basith and G. N. Prameswari, “Pemanfaatan Pelayanan Kesehatan di Puskesmas,” Higeia J. Public Heal. Res. Dev., vol. 4, no. 1, pp. 52–63, 2020.

Y. Assefa, Y. A. Gelaw, P. S. Hill, B. W. Taye, and W. Van Damme, “Community health extension program of Ethiopia, 2003-2018: Successes and challenges toward universal coverage for primary healthcare services,” Global. Health, vol. 15, no. 1, pp. 1–11, 2019, doi: 10.1186/s12992-019-0470-1.

F. Indrasari, R. Wulandari, and D. N. Anjayanti, “Peran Resep Elektronik dalam Meningkatkan Medication Safety pada Proses Peresepan di RSI Sultan Agung Semarang,” J. Farm. Dan Ilmu Kefarmasian Indones., vol. 7, no. 1SI, p. 1, 2021, doi: 10.20473/jfiki.v7i1si2020.1-6.

I. S. Pradipta et al., “Barriers to Optimal Tuberculosis Treatment Services at Community Health Centers: A Qualitative Study From a High Prevalent Tuberculosis Country,” Front. Pharmacol., vol. 13, no. March, pp. 1–12, 2022, doi: 10.3389/fphar.2022.857783.

M. E. Rahman, B. M. Sinaga, N. Harianto, and S. H. Susilowati, “Kebijakan Dukungan Domestik Untuk Menetralisir Dampak Negatif Penurunan Tarif Impor Terhadap Industri Gula Indonesia,” J. Agro Ekon., vol. 36, no. 2, p. 91, 2019, doi: 10.21082/jae.v36n2.2018.91-112.

K. L. Strutz, Z. Luo, J. E. Raffo, C. I. Meghea, P. Vander Meulen, and L. A. Roman, “Determining County-Level Counterfactuals for Evaluation of Population Health Interventions: A Novel Application of K-Means Cluster Analysis,” Public Health Rep., vol. 137, no. 5, pp. 849–859, 2022, doi: 10.1177/00333549211030507.

R. W. Grant et al., “Use of Latent Class Analysis and k-Means Clustering to Identify Complex Patient Profiles,” JAMA Netw. Open, vol. 3, no. 12, pp. 1–13, 2020, doi: 10.1001/jamanetworkopen.2020.29068.

Annisa Nadaa Shabrina, M. Afdal, and Siti Monalisa, “Comparison Of K-Means, K-Medoids, and Fuzzy C-Means Algorithms for Clustering Drug User’s Addiction Levels,” J. Sist. Cerdas, vol. 6, no. 2, pp. 113–122, 2023, doi: 10.37396/jsc.v6i2.313.

E. Keiller et al., “Intensive community care services for children and young people in psychiatric crisis: an expert opinion,” BMC Med., vol. 21, no. 1, pp. 1–9, 2023, doi: 10.1186/s12916-023-02986-5.

S. Wang, Y. Sun, and Z. Bao, “On the e iciency of k-means clustering: Evaluation, optimization, and algorithm selection,” Proc. VLDB Endow., vol. 14, no. 2, pp. 163–175, 2020, doi: 10.14778/3425879.3425887.

R. Saputra, L. Yulianti, and L. Elfianty, “Drug Data Clustering Based on Total Inventory and Total Demand for Drugs Using the K-means Clustering Method at Pajar Bulan Health Center,” J. Komputer, Inf. dan Teknol., vol. 2, no. 1, pp. 137–142, 2022, doi: 10.53697/jkomitek.v2i1.784.

T. Asy Aria, M. Julkarnain, and F. Hamdani, “KLIK: Kajian Ilmiah Informatika dan Komputer Penerapan Algoritma K-Means Clustering Untuk Data Obat,” Media Online, vol. 4, no. 1, pp. 649–657, 2023, doi: 10.30865/klik.v4i1.1117.

D. S. Siringo-Ringo, R. B. D. Tambunan, D. Yulizar, T. A. Daulay, and A. M. Husein, “Application of Data Mining for Optimal Drug Inventory in a Hospital,” SinkrOn, vol. 4, no. 1, p. 207, 2019, doi: 10.33395/sinkron.v4i1.10236.

A. Lia Hananto et al., “Analysis of Drug Data Mining with Clustering Technique Using K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1908, no. 1, 2021, doi: 10.1088/1742-6596/1908/1/012024.

D. Astuti and C. Sundari, “Implementasi Algoritma Vigenere Cipher Untuk Enkripsi Dan Dekripsi Pada Peresepan Data Obat Di Puskesmas Mertoyudan 1 Kabupaten Magelang,” J. Tek. Inf. dan Komput., vol. 5, no. 2, p. 341, 2022, doi: 10.37600/tekinkom.v5i2.534.

R. W. Arini and S. Nanih, “Analisis Sistem Antrian Badan Penyelenggara Jaminan Sosial (Bpjs) Kesehatan : Studi Kasus Puskesmas Margadadi,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 23–37, 2022, doi: 10.55606/jurritek.v1i1.104.

D. Yuliani and Sunarmi, “Analisis Sistem Informasi Akuntansi Persediaan Obat-Obatan (Studi Kasus pada UPT Puskesmas Ambarawa),” J. Educ., vol. 06, no. 01, pp. 1–23, 2023.

S. Qi, F. Hua, S. Xu, Z. Zhou, and F. Liu, “Trends of global health literacy research (1995-2020): Analysis of mapping knowledge domains based on citation data mining,” PLoS One, vol. 16, no. 8 August, pp. 1–23, 2021, doi: 10.1371/journal.pone.0254988.

S. Khalid and D. Prieto-Alhambra, “Machine Learning for Feature Selection and Cluster Analysis in Drug Utilisation Research,” Curr. Epidemiol. Reports, vol. 6, no. 3, pp. 364–372, 2019, doi: 10.1007/s40471-019-00211-7.

R. Nainggolan and F. A. T. Tobing, “Developing HIV/AIDS Patient Profile Model Using K-Means Clustering Method,” IJNMT (International J. New Media Technol., vol. 10, no. 1, pp. 35–41, 2023.

A. Voicu, N. Duteanu, M. Voicu, D. Vlad, and V. Dumitrascu, “The rcdk and cluster R packages applied to drug candidate selection,” J. Cheminform., vol. 12, no. 1, pp. 1–8, 2020, doi: 10.1186/s13321-019-0405-0.

S. Mullin et al., “Longitudinal K-means approaches to clustering and analyzing EHR opioid use trajectories for clinical subtypes,” J. Biomed. Inform., vol. 122, p. 103889, 2021, doi: 10.1016/j.jbi.2021.103889.

Y. Lu, Y. M. Cheung, and Y. Y. Tang, “Self-Adaptive Multiprototype-Based Competitive Learning Approach: A k-Means-Type Algorithm for Imbalanced Data Clustering,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1598–1612, 2021, doi: 10.1109/TCYB.2019.2916196.

R. D. Dana, A. R. Dikananda, D. Sudrajat, A. Wanto, and F. Fasya, “Measurement of health service performance through machine learning using clustering techniques,” J. Phys. Conf. Ser., vol. 1360, no. 1, 2019, doi: 10.1088/1742-6596/1360/1/012017.

Holwati, E. Widodo, and W. Hadikristanto, “Pengelompokan Untuk Penjualan Obat Dengan Menggunakan Algoritma K-Means,” Bull. Inf. Technol., vol. 4, no. 3, pp. 408–413, 2023, doi: 10.47065/bit.v4i3.848.

M. D. Marieska, S. Lestari, C. Mahendra, N. R. Oktadini, and M. A. Buchari, “Optimasi Algoritma K-Means Clustering dengan Parallel Processing menggunakan Framework R,” J. Edukasi dan Penelit. Inform., vol. 7, no. 1, p. 70, 2021, doi: 10.26418/jp.v7i1.43400.

B. Al Kindhi, T. A. Sardjono, M. H. Purnomo, and G. J. Verkerke, “Hybrid K-means, fuzzy C-means, and hierarchical clustering for DNA hepatitis C virus trend mutation analysis,” Expert Syst. Appl., vol. 121, pp. 373–381, 2019, doi: 10.1016/j.eswa.2018.12.019.

I. P. Sari, O. K. Sulaiman, A.-K. Al-Khowarizmi, and M. Azhari, “Perancangan Sistem Informasi Pelayanan Masyarakat pada Kelurahan Sipagimbar dengan Metode Prototype Berbasis Web,” Blend Sains J. Tek., vol. 2, no. 2, pp. 125–134, 2023, doi: 10.56211/blendsains.v2i2.288.

Kurniawan and Syarifuddin, “Perancangan Sistem Aplikasi Pemesanan Makanan dan Minuman Pada Cafetaria NO Caffe di TAnjung Balai Karimun Menggunakan Bahasa Pemrograman PHP dan MySQL,” J. Tikar, vol. 1, no. 2, pp. 192–206, 2020.

C. Hajat, Y. Siegal, and A. Adler-Waxman, “Clustering and Healthcare Costs With Multiple Chronic Conditions in a US Study,” Front. Public Heal., vol. 8, no. January, pp. 1–10, 2021, doi: 10.3389/fpubh.2020.607528.




DOI: https://doi.org/10.32520/stmsi.v13i5.4541

Article Metrics

Abstract view : 38 times
PDF - 9 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.