Analysis of School Life Expectancy Prediction in North Sumatra using the ARIMA Method for the 2024-2025 Period

Egi Dio Bagus Sudewo, Muhammad Kunta Biddinika, Khoirul Anam Dahlan, Kintung Prayitno, Kariyamin Kariyamin

Abstract


This study analyzes the projection of the School Life Expectancy (HLS) in 33 districts/cities in North Sumatra Province using the ARIMA method. Historical HLS data from 2019 to 2023 were used to forecast the HLS values for 2024 and 2025. The prediction results show an increase in HLS in most regions, with several districts/cities such as Labuhan Batu, Pematangsiantar City, and Padangsidempuan City experiencing significant growth. However, some regions like Mandailing Natal and Samosir show a more stable trend without significant increases. These findings indicate disparities in access and quality of education across various regions in North Sumatra. Overall, the ARIMA model provides a positive forecast for future HLS improvements, though regional disparities require special attention from relevant authorities to promote equal access to education.

Full Text:

PDF

References


A. J. Mahya, “Analisis Pengaruh Angka Harapan Lama Sekolah, Rata-Rata Lama Sekolah, Dan Pengeluaran Per Kapita Terhadap Indeks Pembangunan Manusia Di Provinsi Jawa Tengah,” Prism. J. Pendidik. dan Ris. Mat., vol. 3, no. 2, pp. 126–140, 2021, doi: 10.33503/prismatika.v3i2.1180.

N. Aeni, “Pandemi COVID-19: Dampak Kesehatan, Ekonomi, & Sosial,” J. Litbang Media Inf. Penelitian, Pengemb. dan IPTEK, vol. 17, no. 1, pp. 17–34, 2021, doi: 10.33658/jl.v17i1.249.

K. Akbar, Irsad, E. T. Kembaren, A. F. Tanjung, and A. R. Harahap, “Impact of the COVID-19 Pandemic on the Indonesian Economy,” J. Agriuma, vol. 4, no. 2, pp. 88–96, 2020, doi: 10.33059/jseb.v14i2.4395.Abstrak.

E. A. Gultom, N. Eltivia, and N. I. Riwajanti, “Shares Price Forecasting Using Simple Moving Average Method and Web Scrapping,” J. Appl. Business, Tax. Econ. Res., vol. 2, no. 3, pp. 288–297, 2023, doi: 10.54408/jabter.v2i3.164.

A. P. Wibawa, A. B. P. Utama, H. Elmunsyah, U. Pujianto, F. A. Dwiyanto, and L. Hernandez, “Time-series analysis with smoothed Convolutional Neural Network,” J. Big Data, vol. 9, no. 1, 2022, doi: 10.1186/s40537-022-00599-y.

S. Barapatre, “Digital Sensor Forecasting for Metro Air Units : A Vector Autoregression Approach,” 2024 IEEE Int. Conf. Inf. Technol. Electron. Intell. Commun. Syst., pp. 1–4, 2024, doi: 10.1109/ICITEICS61368.2024.10625539.

T. Lv, Y. Wu, and L. Zhang, “A Traffic Interval Prediction Method Based on ARIMA,” J. Phys. Conf. Ser., vol. 1880, no. 1, 2021, doi: 10.1088/1742-6596/1880/1/012031.

X. Zhang, Q. Zhou, S. Weng, and H. Zhang, “ARIMA Model-Based Fire Rescue Prediction,” Sci. Program., vol. 2021, 2021, doi: 10.1155/2021/3212138.

S. Jafarian-Namin, D. Shishebori, and A. Goli, “Analyzing and Predicting the Monthly Temperature of Tehran Using ARIMA Model, Artificial Neural Network, and Its Improved Variant,” J. Appl. Res. Ind. Eng., vol. 11, no. 1, pp. 76–92, 2024, doi: 10.22105/jarie.2023.356297.1502.

H. Mardesci, M. Maryam, and K. Ihwan, “Forecasting Coconut Production in Indragiri Hilir with Autoregressive Integrated Moving Average Model,” Sistemasi, vol. 12, no. 1, p. 219, 2023, doi: 10.32520/stmsi.v12i1.2531.

G. L. Ramadhan, D. Agushinta R., and H. Sussanto, “Peramalan Inflasi Indonesia Dengan Seasonal Auto Regressive Integrated Moving Average,” Sistemasi, vol. 10, no. 3, p. 627, 2021, doi: 10.32520/stmsi.v10i3.1360.

M. Pangaribuan and A. Rahim Damanik, “Algoritma Conjugate Gradient Polak Rebiere untuk Memprediksi Harapan Lama Sekolah Masyarakat Sumatera Utara,” J. JPILKOM, vol. 1, no. 2, pp. 3025–6887, 2023.

C. Shoko and P. Njuho, “Arima Model in Predicting of Covid-19 Epidemic for the Southern Africa Region,” African J. Infect. Dis., vol. 17, no. 1, pp. 1–9, 2023, doi: 10.21010/Ajidv17i1.1.

D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, and M. Ciccozzi, “Application of the ARIMA model on the COVID-2019 epidemic dataset,” Data Br., vol. 29, p. 105340, 2020, doi: 10.1016/j.dib.2020.105340.

Z. Dong and H. Hao, “Vegetable Sales Forecasting and Pricing Strategy Planning Based on ARIMA Algorithm and Linear Programming Model,” 2024 4th Int. Symp. Comput. Technol. Inf. Sci. ISCTIS 2024, pp. 376–381, 2024, doi: 10.1109/ISCTIS63324.2024.10698868.

J. Han, Y. Fu, and H. Zhang, “Optimization Research on Vegetable Sales in Supermarkets Based on Greedy Algorithm and ARIMA Time Series Model,” 2024 IEEE 3rd Int. Conf. Electr. Eng. Big Data Algorithms, EEBDA 2024, pp. 979–985, 2024, doi: 10.1109/EEBDA60612.2024.10485713.

M. Siino, I. Tinnirello, and M. La Cascia, “Is text preprocessing still worth the time ? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers,” Inf. Syst., vol. 121, no. July 2023, p. 102342, 2024, doi: 10.1016/j.is.2023.102342.

V. I. Kontopoulou, A. D. Panagopoulos, I. Kakkos, and G. K. Matsopoulos, “A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks,” Futur. Internet, vol. 15, no. 8, pp. 1–31, 2023, doi: 10.3390/fi15080255.

O. O. Awe, A. Okeyinka, and J. O. Fatokun, “An Alternative Algorithm for ARIMA Model Selection,” 2020 Int. Conf. Math. Comput. Eng. Comput. Sci. ICMCECS 2020, 2020, doi: 10.1109/ICMCECS47690.2020.246979.




DOI: https://doi.org/10.32520/stmsi.v13i6.4611

Article Metrics

Abstract view : 17 times
PDF - 6 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.