Digital Image-based Classification of Clove Quality using Naïve Bayes Algorithm

Dilla Dilla, M. Adnan Nur, Musdalifah Djamaluddin

Abstract


At present, clove cultivation is increasingly in demand, especially by farmers because it is easy to maintain and the selling price is high. Researchers conducted observations in Tana Toa Village on how the processing of cloves after harvesting is drying them in the sun until they turn brown and shrink. After that, farmers select dried cloves and distinguish between good and bad quality. One way for farmers and traders to determine the quality of cloves is by visually inspecting the size and color. One of the disadvantages of this manual classification process is that each person can look at the same material in bulk in different ways depending on the situation or individual weak points. The aim of this research is to help farmers produce high quality cloves that will ultimately produce favorable results on their economy. With digital image-based methods and Naive Bayes, this process can be done quickly and efficiently, reducing operational costs and labor time. The Naive Bayes algorithm is able to process data more thoroughly than humans, especially if the image quality and features used for classification are optimized. This reduces human errors that may occur during manual processing. The results of this study are, Gaussian Naive Bayes testing has an accuracy of 0.82. Bernoulli naïve bayes has an accuracy of 0.69, Complement naïve bayes and multinomial naïve bayes each have an accuracy of 0.89. This shows that they affect the accuracy rate of clove quality effectively

Full Text:

PDF

References


A. Asrawati and M. Antara, “Analisis Pendapatan Usahatani Cengkeh Di Desa Talaga Kecamatan Dampelas Kabupaten Donggala,” Agrotekbis E-Jurnal Ilmu Pertan., vol. 5, no. 4, pp. 476–482, 2022.

A. Lutfi, “Bab 1 pendahuluan,” Pelayanan Kesehat., vol. 2013, no. Dm, pp. 3–13, 2019, [Online]. Available: http://repository.usu.ac.id/bitstream/123456789/23790/4/Chapter I.pdf

N. Nurmala and M. Asse, “Analisis Kontribusi Pendapatan Usahatani Cengkeh Terhadap Pendapatan Rumah Tangga Tani Di Desa Dungingis Kecamatan Dako Pemean Kabupaten Tolitoli (Studi Kasus Pada Kelompok Tani Mekar 2),” J. Agrotech, vol. 10, no. 1, pp. 9–14, 2020.

L. D. I. Kabupaten and L. Utara, “Analisis Spasial Pengembangan Cengkeh ( Eugenia Aromatica L. ) Di Kabupaten Lombok Utara,” 2019.

S. M. Amelia and F. Pertanian, “No Title,” 2019.

Sutriyono and M. Ali, “Budidaya Tanaman Cengkeh,” Fak. PertanianUniversitas Merdeka Surabay, pp. 1–17, 2019, [Online]. Available: https://www.academia.edu/35842224/Teknik_Budidaya_Tanaman_Cengkeh

T. Turap, T. B. Merupakan, T. B. Lebih, And T. D. Turap, “Pengeringan Cengkeh (Syzygium Aromaticum) Menggunakan Rumah Pengering Hybrid Tipe Rak,” pp. 1–17, 2023.

P. A. L. Pesik, V. C. Poekoel, and M. D. Putro, “Penilaian Mutu Cengkih Menggunakan Citra Digital Priscilia,” J. Tek. Elektro dan Komput., vol. 7, no. 2, pp. 161–166, 2018.

Y. N. Yaspin, D. W. Widodo, and A. B. Setiawan, “Klasifikasi Kualitas Bunga Cengkeh untuk Meningkatkan Mutu Dengan Pemanfaatan Ciri Gray Level Co-Occurence Matrix (GLCM).” Universitas Nusantara PGRI Kediri, 2020.

T. Anggin Virnando, I. Widaningrum, K. Nurfitri, and H. Artikel, “Jurnal Rekayasa Teknologi dan Komputasi URL : https://journal.umpo.ac.id/index.php/JRTK/index Penerapan Algoritma K-Nearest Neighbor (K-Nn) Pada Klasifikasi Kualitas Hasil Pengeringan Bunga Cengkih,” no. kualitas 1, 2022, [Online]. Available: https://journal.umpo.ac.id/index.php/JRTK/index

P. Studi and M. Keteknikan, “Oleh : Istifar Yogi Prayogi,” 2021.

M. Saputra, K. Kusrini, and M. P. Kurniawan, “Identifikasi Mutu Bij Kopi Arabika Berdasarkan Cacat dengan Teknik Convolutional Neural Network,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, p. 27, 2020, doi: 10.35585/inspir.v10i1.2533.

A. Firmansyah and R. Kurniawan, “Analisis Sentimen dalam Penentuan Kinerja Layanan antara In-Driver dan Gojek berdasarkan Opini Masyarakat menggunakan Metode Naive Bayes Sentiment Analysis in Determining Service Performance between In-Driver and Gojek based on Public Opinion using the Naive Bayes Method,” vol. 13, pp. 1281–1294, 2024.

N. H. Kario Balai Pengkajian Teknologi Pertanian Nusa Tenggara Timur Jl Timor Raya Km, “Analisis Usaha Panen Cengkehdi Kabupaten Minahasa Tenggara Propinsi Sulawesi Utara,” Agritech, vol. XVI, no. 2, pp. 146–156, 2014.

N. Neneng, A. S. Puspaningrum, and A. A. Aldino, “Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-occurrence Matrices (GLCM) Dan Local Binary Pattern (LBP),” Smatika J. Stiki Inform. J., vol. 11, no. 01, pp. 48–52, 2021.

I. P. Wardhani and S. Widayati, “Segmentasi Warna Citra HSV dan Deteksi Objek Kupu-Kupu Dengan Metode Klasifikasi K-Means,” Pros. SeNTIK, vol. 3, no. 1, pp. 125–131, 2019.

S. Sanjaya, “Aplikasi pengenalan tingkat kematangan buah tomat menggunakan fitur warna hsv berbasis android,” J. Teknoinfo, vol. 16, no. 1, pp. 26–33, 2022.

L. N. S. Aljustin, “Penerapan Contrast Limited Adaptive Histogram Equalization Pada Klasifikasi Penyakit Daun Kentang Dengan Menggunakan Metode K-Nearest Neighbor Berdasarkan Ekstraksi Fitur Glcm Dan Hsv.” UPN Veteran Yogyakarta, 2023.

L. Mardiana, D. Kusnandar, and N. Satyahadewi, “Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Kualitas Air Di Kota Pontianak,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 11, no. 1, 2022.

R. Ardianto, T. Rivanie, Y. Alkhalifi, S. N. Fitra, and W. Gata, “Sentiment analysis on E-sports for education curriculum using naive Bayes and support vector machine,” 2021.

S. D. Anggita, “Algorithm Comparation of Naive Bayes and Support Vector Machine based on Particle Swarm Optimization in Sentiment Analysis of Freight Forwarding Services,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 4, no. 2, pp. 362–369, 2020.

S. Tamrakar, B. K. Bal, and R. B. Thapa, “Aspect based sentiment analysis of Nepali text using support vector machine and naive bayes,” Tech. J., vol. 2, no. 1, pp. 22–29, 2020.




DOI: https://doi.org/10.32520/stmsi.v13i5.4617

Article Metrics

Abstract view : 34 times
PDF - 12 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.