A Fall Risk Detection Model for Infants While Sleeping based on Convolutional Neural Networks
Abstract
Full Text:
PDFReferences
B. A. Morrongiello and D. C. Schwebel, “Introduction to Special Section: Pediatric Psychology and Child Unintentional Injury Prevention: Current State and Future Directions for the Field,” J. Pediatr. Psychol., vol. 42, no. 7, pp. 721–726, Aug. 2017, doi: 10.1093/jpepsy/jsx072.
J. Liu et al., “A review of wearable sensors based fall-related recognition systems,” Eng. Appl. Artif. Intell., vol. 121, p. 105993, May 2023, doi: 10.1016/j.engappai.2023.105993.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
S. Nooruddin, Md. M. Islam, F. A. Sharna, H. Alhetari, and M. N. Kabir, “Sensor-based fall detection systems: a review,” J. Ambient Intell. Humaniz. Comput., vol. 13, no. 5, pp. 2735–2751, May 2022, doi: 10.1007/s12652-021-03248-z.
Susetyo Bagas Bhaskoro, E. A. Salsabillah, and Afaf Fadhil Rifa’i, “Sistem Identifikasi Manusia Bergerak Jatuh Berdasarkan Ekstraksi Suara dan Citra,” JTRM J. Teknol. Dan Rekayasa Manufaktur, vol. 4, no. 2, pp. 101–116, Dec. 2022, doi: 10.48182/jtrm.v4i2.94.
J. H. Tan and C. P. Goh, “Enhancing Child Safety: Computer Vision-Based Accident Detection for Infants and Toddlers,” in 2024 3rd International Conference on Digital Transformation and Applications (ICDXA), Kuala Lumpur, Malaysia: IEEE, Jan. 2024, pp. 1–5. doi: 10.1109/ICDXA61007.2024.10470712.
M. Khan, R. Khalid, S. Anjum, S. V.-T. Tran, and C. Park, “Fall Prevention from Scaffolding Using Computer Vision and IoT-Based Monitoring,” J. Constr. Eng. Manag., vol. 148, no. 7, p. 04022051, Jul. 2022, doi: 10.1061/(ASCE)CO.1943-7862.0002278.
G. Oumaima, A. A. Hamd, T. Youness, O. H. T. Rachid, and B. Omar, “Vision-based fall detection and prevention for the elderly people: A review & ongoing research,” in 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco: IEEE, Oct. 2021, pp. 1–6. doi: 10.1109/ICDS53782.2021.9626736.
K. V. Sree and G. Jeyakumar, “A Computer Vision Based Fall Detection Technique for Home Surveillance,” in Computational Vision and Bio-Inspired Computing, vol. 1108, S. Smys, J. M. R. S. Tavares, V. E. Balas, and A. M. Iliyasu, Eds., in Advances in Intelligent Systems and Computing, vol. 1108. , Cham: Springer International Publishing, 2020, pp. 355–363. doi: 10.1007/978-3-030-37218-7_41.
I. Irdawati, J. Ramadhanni, and A. R. Syaiful, “Overview of Parents’ Knowledge About Accident Prevention in Toddler,” J. Ber. Ilmu Keperawatan, vol. 16, no. 1, pp. 47–52, Feb. 2023, doi: 10.23917/bik.v16i1.1014.
Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827.
S. Choi, S. Yun, and B. Ahn, “Implementation of Automated Baby Monitoring: CCBeBe,” Sustainability, vol. 12, no. 6, p. 2513, Mar. 2020, doi: 10.3390/su12062513.
J. Lu, L. Tan, and H. Jiang, “Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification,” Agriculture, vol. 11, no. 8, p. 707, Jul. 2021, doi: 10.3390/agriculture11080707.
W. Ayadi, W. Elhamzi, I. Charfi, and M. Atri, “Deep CNN for Brain Tumor Classification,” Neural Process. Lett., vol. 53, no. 1, pp. 671–700, Feb. 2021, doi: 10.1007/s11063-020-10398-2.
Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef City, 62511, Egypt et al., “Image Classification Based On CNN: A Survey,” J. Cybersecurity Inf. Manag., p. PP. 18-50, 2021, doi: 10.54216/JCIM.060102.
A. Z. Pramuditha, S. Suroso, and M. F. Fadhli, “Face Detection Dengan Model Arsitektur VGG 19 Pada Metode Convolutional Neural Network,” SISTEMASI, vol. 13, no. 5, p. 1998, Sep. 2024, doi: 10.32520/stmsi.v13i5.4399.
DOI: https://doi.org/10.32520/stmsi.v13i6.4644
Article Metrics
Abstract view : 38 timesPDF - 5 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.