Image Classification of Indonesian Snacks using Convolutional Neural Network

Kunti Eliyen, Abidatul Izzah, Fikha Rizky Aullia

Abstract


Each region in Indonesia has its own unique and distinctive culinary traditions. However, many people are still unfamiliar with the names of traditional Indonesian snacks, especially those that originate from regions other than their own. Promoting these traditional snacks is essential as an initial step in educating both domestic and international audiences about Indonesia’s cultural diversity. Culinary heritage is also a key factor in attracting tourists to visit a region. One way to address this issue is through image classification of Indonesian traditional snacks using Convolutional Neural Networks (CNN). This study uses a dataset consisting of 30 images across 10 classes, with 3 images per class. The model was trained over 40 epochs and achieved an accuracy of 86%. The testing phase yielded a recall of 86%, precision of 91%, and an F1-score of 88%.

Keywords


Image classification; snack; Convolutional Neural Network

Full Text:

PDF

References


Y. Zhao, Y. Rao, S. Dong, and Zhang, “Survey on Deep Learning Object Detecton,” 2020.

W. Fang, P. E. D. Love, H. Luo, and L. Ding, “Computer Vision For Behaviour-based Safety in Construction: A Review and Future Directions,” Jan. 01, 2020, Elsevier Ltd. doi: 10.1016/j.aei.2019.100980.

A. Santoso and G. Ariyanto, “Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah,” Jurnal Teknik Elektro, vol. 18, no. 01, [Online]. Available: https://www.mathworks.com/discovery/convol

L. Alzubaidi et al., “Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00444-8.

W. P. Kusumo and C. S. K. Aditya, “Klasifikasi Citra Makanan berdasarkan Asal Daerah menggunakan Convolutional Neural Network Food Image Classification based on Regional Origin using Convolutional Neural Network.”

P. D. Wardani, “Klasifikasi Tipe Kematangan Pisang menggunakan Metode Ensemble Convlutional Neural Network (CNN),” JPTIIK, vol.8, No.9, September 2024.

A. Kholik, “Klasifikasi menggunakan Convolutional Neural Network (CNN) pada Tangkapan Layar Halaman Instagram,” JDMSI, vol. 2, no. 2, pp. 10–20, 2021.

Elvin and C. Lubis, “Klasifikasi Citra Ikan menggunakan Convolutional Neural Network.” Jurnal Ilmu Komputer dan Sistem Informasi, 2022.

J. Lin, A. Zhang, M. Lécuyer, J. Li, A. Panda, and S. Sen, “Measuring the Effect of Training Data on Deep Learning Predictions via Randomized Experiments.”

M. Taufik Ali, and B. Sugiarto, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Ikan Cupang berbasis Mobile,” Digitech, vol.3, No.2, 2023.

A. Ambarwari, M. Husni, and D. Mahayana, “Perkembangan Metode Klasifikasi Citra Penginderaan Jauh dalam Perspektif Revolusi Ilmiah Thomas Kuhn,” Jurnal Filsafat Indonesia, vol. 6, 2023.

M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Mar. 01, 2023, MDPI. doi: 10.3390/computation11030052.

Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq, “Understanding of Convolutional Neural Network (CNN): A Review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748, 2022, doi: 10.31763/ijrcs.v2i4.888.

K. R. Wardani and L. Leonardi, “Klasifikasi Penyakit pada Daun Anggur menggunakan Metode Convolutional Neural Network,” Jurnal Tekno Insentif, vol. 17, no. 2, pp. 112–126, Oct. 2023, doi: 10.36787/jti.v17i2.1130.

F. Paraijun et al., “Implementasi Algoritma Convolutional Neural Network dalam mengklasifikasi Kesegaran Buah berdasarkan Citra Buah,” vol. 11, no. 1, 2022, doi: 10.33322/kilat.v11i1.1458.

I. Guntoro, D. M. Midyanti, and D. R. Hidayati, “Penerapan Dropout pada Jaringan Saraf Tiruan Backpropagation dalam mengklasifikasi Tingkat Fine Fuel Moisture Code (FFMC) Untuk Kebakaran Hutan dan Lahan,” 2022.




DOI: https://doi.org/10.32520/stmsi.v14i3.4647

Article Metrics

Abstract view : 139 times
PDF - 42 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.