Image Classification of Indonesian Snacks using Convolutional Neural Network
Abstract
Keywords
Full Text:
PDFReferences
Y. Zhao, Y. Rao, S. Dong, and Zhang, “Survey on Deep Learning Object Detecton,” 2020.
W. Fang, P. E. D. Love, H. Luo, and L. Ding, “Computer Vision For Behaviour-based Safety in Construction: A Review and Future Directions,” Jan. 01, 2020, Elsevier Ltd. doi: 10.1016/j.aei.2019.100980.
A. Santoso and G. Ariyanto, “Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah,” Jurnal Teknik Elektro, vol. 18, no. 01, [Online]. Available: https://www.mathworks.com/discovery/convol
L. Alzubaidi et al., “Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00444-8.
W. P. Kusumo and C. S. K. Aditya, “Klasifikasi Citra Makanan berdasarkan Asal Daerah menggunakan Convolutional Neural Network Food Image Classification based on Regional Origin using Convolutional Neural Network.”
P. D. Wardani, “Klasifikasi Tipe Kematangan Pisang menggunakan Metode Ensemble Convlutional Neural Network (CNN),” JPTIIK, vol.8, No.9, September 2024.
A. Kholik, “Klasifikasi menggunakan Convolutional Neural Network (CNN) pada Tangkapan Layar Halaman Instagram,” JDMSI, vol. 2, no. 2, pp. 10–20, 2021.
Elvin and C. Lubis, “Klasifikasi Citra Ikan menggunakan Convolutional Neural Network.” Jurnal Ilmu Komputer dan Sistem Informasi, 2022.
J. Lin, A. Zhang, M. Lécuyer, J. Li, A. Panda, and S. Sen, “Measuring the Effect of Training Data on Deep Learning Predictions via Randomized Experiments.”
M. Taufik Ali, and B. Sugiarto, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Ikan Cupang berbasis Mobile,” Digitech, vol.3, No.2, 2023.
A. Ambarwari, M. Husni, and D. Mahayana, “Perkembangan Metode Klasifikasi Citra Penginderaan Jauh dalam Perspektif Revolusi Ilmiah Thomas Kuhn,” Jurnal Filsafat Indonesia, vol. 6, 2023.
M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Mar. 01, 2023, MDPI. doi: 10.3390/computation11030052.
Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq, “Understanding of Convolutional Neural Network (CNN): A Review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748, 2022, doi: 10.31763/ijrcs.v2i4.888.
K. R. Wardani and L. Leonardi, “Klasifikasi Penyakit pada Daun Anggur menggunakan Metode Convolutional Neural Network,” Jurnal Tekno Insentif, vol. 17, no. 2, pp. 112–126, Oct. 2023, doi: 10.36787/jti.v17i2.1130.
F. Paraijun et al., “Implementasi Algoritma Convolutional Neural Network dalam mengklasifikasi Kesegaran Buah berdasarkan Citra Buah,” vol. 11, no. 1, 2022, doi: 10.33322/kilat.v11i1.1458.
I. Guntoro, D. M. Midyanti, and D. R. Hidayati, “Penerapan Dropout pada Jaringan Saraf Tiruan Backpropagation dalam mengklasifikasi Tingkat Fine Fuel Moisture Code (FFMC) Untuk Kebakaran Hutan dan Lahan,” 2022.
DOI: https://doi.org/10.32520/stmsi.v14i3.4647
Article Metrics
Abstract view : 139 timesPDF - 42 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.