Classification of Beef, Goat, and Pork using GLCM Texture-Based Backpropagation Neural Network

Irma Saraswati, Rian Fahrizal, Anugrah Nuur Fauzan, Muchtar Ali Setyo Yudono

Abstract


Identifying different types of meat is crucial for preventing fraudulent activities and improving food safety. This research aims to create a classification system for various meat types (beef, goat, and pork) using the Gray Level Co-occurrence Matrix (GLCM) for extracting texture features, followed by classification through a Backpropagation Neural Network (BPNN). The methodology utilizes 60 images of beef, goat, and pork, achieving a remarkable accuracy of 100% in the training phase, which highlights the model's capability to effectively recognize patterns. However, when tested with new data, the system exhibits a sensitivity of 90% and a specificity of 95%, with some misclassifications occurring between goat and beef due to their similar textures. The findings of this study suggest that GLCM is an effective tool for deriving relevant statistical parameters necessary for classification. This research makes a significant contribution to developing a meat identification system that safeguards consumers and promotes awareness of food safety issues. The results are anticipated to provide a solid foundation for advancing meat type recognition and practical applications in the marketplace, ultimately boosting public trust in the meat products they purchase.

Full Text:

PDF

References


A. Hassoun et al., “Fraud in animal origin food products: Advances in emerging spectroscopic detection methods over the past five years,” Foods, vol. 9, no. 8, 2020, doi: 10.3390/foods9081069.

S. Pitaloka, V., Nurlaela, R.S., Ginanjar, G., Novari, I., Pratama, J.P., “Analisis Cemaran Dan Pemalsuan Daging Babi Terhadap Berbagai Produk Olahan Daging Sapi Dengan Metode Polimerase Chain Reaction ( PCR ),” J. Karimah Tauhid, vol. 3, no. 6, pp. 7218–7227, 2024.

Y. I. Hawula, D. Mauritsius, and Y. M. Y. Jacob, “Analisis Perlindungan Konsumen Atas Penjualan Daging Hewan (Sapi dan Babi) di Pasar Mingguan Baun Menurut Undang Undang Perlindungan Konsumen Nomor 8 Tahun 1999,” Doktrin J. Dunia Ilmu Huk. dan Polit., vol. 2, no. 3, pp. 195–210, 2024, doi: https://doi.org/10.59581/doktrin.v2i3.3321.

L. Nida, H. Pisestyani, and C. Basri, “Studi Kasus: Pemalsuan Daging Sapi Dengan Daging Babi Hutan Di Kota Bogor,” J. Kaji. Vet., vol. 8, no. 2, pp. 121–130, 2020, doi: https://doi.org/10.35508/jkv.v8i2.2326.

I. D. Damayanti, A. Michael, F. Fridolin, H. K. Y. Piopadang, and S. P., “Klasifikasi Citra Daging Babi dan Daging Kerbau Menggunakan Histogram Citra dan GLCM,” J. Syst. Comput. Eng., vol. 4, no. 2, pp. 188–200, 2023, doi: 10.61628/jsce.v4i2.878.

S. Wahyuni, S. Maryam, and A. Aminah, “Validasi Metode Analisis Cemaran DNA Babi pada Bakso Sapi Menggunakan Primer Mitokondria D-Loop22 dengan Metode Polymerase Chain Reaction (PCR),” J. Farm. Galen. (Galenika J. Pharmacy), vol. 5, no. 1, pp. 65–72, 2019, doi: 10.22487/j24428744.2019.v5.i1.12035.

Mardiah, L. Amalia, and D. A. Trimelati, “Analisis Kehalalan Daging Sapi Dengan Metode Pork Detection Kit (Pdk) dan Analisis Tingkat Kepedulian Konsumen dalam Mengonsumsi Daging Sapi Halal di Kota Bekasi Analysis of Halal Beef using The Pork Detection Kit (PDK) Methods and Analysis of The Level O,” J. Agroindustri Halal, vol. 7, no. 2, pp. 155–165, 2021.

R. Wicaksono Hadi and I. Setiawan, “Perancangan Alat Pendeteksi Kualitas Daging Sapi Berdasar Warna dan Bau Berbasis Mikrokontroler Atmega32 Menggunakan Logika Fuzzy,” J. Transm., vol. 13, no. 1, pp. 21–26, 2011, [Online]. Available: http://ejournal.undip.ac.id/index.php/transmisi

M. Junihardi, S. Sanjaya, L. Handayani, and F. Syafria, “Klasifikasi Daging Sapi Dan Daging Babi Menggunakan Arsitektur EfficientNet-B3 Dan Augmentasi Data,” J. TEKINKOM, vol. 6, no. 1, pp. 16–25, 2023, doi: 10.37600/tekinkom.v6i1.845.

N. Neneng, A. S. Puspaningrum, and A. A. Aldino, “Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-occurrence Matrices (GLCM) Dan Local Binary Pattern (LBP),” Smatika J., vol. 11, no. 01, pp. 48–52, 2021, doi: 10.32664/smatika.v11i01.572.

R. Munarto and M. A. S. Yudono, “Klasifikasi Katarak Objek Optic Disc Citra Fundus Retina Menggunakan Support Vector Machine,” J. Ilm. Setrum Artic. Press, vol. 8, no. 1, pp. 84–95, 2019.

R. Munarto, M. A. S. Yudono, and E. Permata, “Automatic Cataract Classification System Using Neural Network Algorithm Backpropagation,” in 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), Lombok: IEEE, 2020, pp. 101–106. doi: 10.1109/ICIEE49813.2020.9277441.

M. A. S. Yudono, R. R. Isnanto, and A. Triwiyatno, “Comparison of Cataract Classification System Based on Retinal Blood Vessels Objects and Retinal Optic Disc Using Backpropagation Neural Network,” Int. J. Innov. Eng. Technol., vol. 18, no. 2, pp. 1–8, 2021, doi: 10.13140/RG.2.2.16638.46408.

H. Hartono, Y. Muharni, I. Setiawan, I. Saraswati, and A. Maulana, “Load Forecasting Energi Listrik Provinsi Banten Tahun 2022-2030 Menggunakan Metode Backpropagation Neural Network,” J. Syst. Eng. Manag., vol. 2, no. 1, p. 45, 2023, doi: 10.36055/joseam.v2i1.19265.

R. Fahrizal, M. Yusuf, and I. Artikel, “Klasifikasi Virus Pada Paru-Paru Dalam Gambar X-Ray Menggunakan Convolution Neural Network,” J. Ilm. Setrum, vol. 10, no. 1, pp. 86–94, 2021, doi: 10.36055/setrum.v10i1.11441.

F. M. Syam, M. Ali, S. Yudono, and A. Sujjada, “Perancangan Backpropagation untuk Otentikasi Pola Pembuluh Darah Punggung Tangan Menggunakan GLRLM Backpropagation Design for Authenticating Blood Vessel Patterns of the Back of the Hand Using GLRLM,” Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 3, pp. 1205–1215, 2024, doi: https://doi.org/10.32520/stmsi.v13i3.4109.

R. Sarno, K. Triyana, S. I. Sabilla, D. R. Wijaya, D. Sunaryono, and C. Fatichah, “Detecting Pork Adulteration in Beef for Halal Authentication Using an Optimized Electronic Nose System,” IEEE Access, vol. 8, pp. 221700–221711, 2020, doi: 10.1109/ACCESS.2020.3043394.

Akhiril Anwar Harahap, R. Novita, T. K. Ahsyar, and Z. Zarnelly, “Classification of Beef and Pork with Deep Learning Approach,” J. Sist. Cerdas, vol. 7, no. 1, pp. 55–65, 2024, doi: 10.37396/jsc.v7i1.393.

A. Rahmawati, M. A. S. Yudono, A. Darojatun, P. Hidayatulloh, A. I. Simbolon, and J. W. Wibowo, “Analysis of a Backpropagation Neural Network Training Algorithm for EEG-Based Drowsiness Identification,” in 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Bandung: IEEE, 2023. doi: 10.1109/ICRAMET60171.2023.10366759.

F. M. Syam, R. M. Yusup, Samsudin, and M. A. S. Yudono, “Systematic Review: Image Processing Based Dorsal Vein Pattern Biometric Authentication System,” in 2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED), Kuala Lumpur: IEEE, 2023. doi: 10.1109/ICCED60214.2023.10425238.

W. I. Putra, M. A. S. Yudono, and A. Sujjada, “Comparison of Gabor Filter Parameter Characteristics for Dorsal Hand Vein Authentication Using Artificial Neural Networks,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 3, pp. 440–446, 2023, doi: 10.32736/sisfokom.v12i3.1819.

W. I. Rahayu, C. Prianto, and E. A. Novia, “Perbandingan Algoritma K-Means dan Naive Bayes untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (Persero),” J. Tek. Inform., vol. 13, no. 2, pp. 1–8, 2021.

R. Munarto and A. Darma, “Klasifikasi Gender dan Usia Berdasarkan Citra Wajah Manusia Menggunakan Convolutional Neural Network,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 10, no. 2, pp. 30–43, 2021, doi: 10.36055/setrum.v10i2.12991.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

P. Romadloni, B. Adhi Kusuma, and W. Maulana Baihaqi, “Komparasi Metode Pembelajaran Mesin Untuk Implementasi Pengambilan Keputusan Dalam Menentukan Promosi Jabatan Karyawan,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 622–628, 2022, doi: 10.36040/jati.v6i2.5238.




DOI: https://doi.org/10.32520/stmsi.v13i6.4715

Article Metrics

Abstract view : 18 times
PDF - 7 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.