Optimization of the Naive Bayes Algorithm with SMOTETomek Combination for Imbalance Class Fraud Detection
Abstract
Full Text:
PDFReferences
B. Lebichot, Y.-A. Le Borgne, L. He-Guelton, F. Oblé, and G. Bontempi, “Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection,” no. January, pp. 78–88, 2020, doi: 10.1007/978-3-030-16841-4_8.
A. D. Pozzolo, “Adaptive Machine Learning for Credit Card Fraud Detection Declaration of Authorship,” Dr. - Univ. Libr. Bruxelles, no. December, p. 199, 2015, [Online]. Available: https://www.ulb.ac.be/di/map/adalpozz/pdf/Dalpozzolo2015PhD.pdf%0Ahttp://www.ulb.ac.be/di/map/adalpozz/
N. Ofek, L. Rokach, R. Stern, and A. Shabtai, “Fast-CBUS: A fast clustering-based undersampling method for addressing the class imbalance problem,” Neurocomputing, vol. 243, pp. 88–102, 2017, doi: 10.1016/j.neucom.2017.03.011.
H. Huang, B. Liu, X. Xue, J. Cao, and X. Chen, “Imbalanced credit card fraud detection data: A solution based on hybrid neural network and clustering-based undersampling technique,” Appl. Soft Comput., vol. 154, p. 111368, 2024, doi: 10.1016/J.ASOC.2024.111368.
G. Tong and J. Shen, “Financial transaction fraud detector based on imbalance learning and graph neural network,” Appl. Soft Comput., vol. 149, p. 110984, Dec. 2023, doi: 10.1016/J.ASOC.2023.110984.
A. G. C. de Sá, A. C. M. Pereira, and G. L. Pappa, “A customized classification algorithm for credit card fraud detection,” Eng. Appl. Artif. Intell., vol. 72, no. March, pp. 21–29, 2018, doi: 10.1016/j.engappai.2018.03.011.
B. Xu, Y. Wang, X. Liao, and K. Wang, “Efficient fraud detection using deep boosting decision trees,” Decis. Support Syst., vol. 175, no. 28, p. 114037, 2023, doi: 10.1016/j.dss.2023.114037.
H. Zhu, G. Liu, M. Zhou, Y. Xie, A. Abusorrah, and Q. Kang, “Optimizing Weighted Extreme Learning Machines for imbalanced classification and application to credit card fraud detection,” Neurocomputing, vol. 407, pp. 50–62, 2020, doi: 10.1016/j.neucom.2020.04.078.
M. A. Islam, M. A. Uddin, S. Aryal, and G. Stea, “An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes,” J. Inf. Secur. Appl., vol. 78, no. October, p. 103618, 2023, doi: 10.1016/j.jisa.2023.103618.
S. Akila and U. Srinivasulu Reddy, “Cost-sensitive Risk Induced Bayesian Inference Bagging (RIBIB) for credit card fraud detection,” J. Comput. Sci., vol. 27, pp. 247–254, 2018, doi: 10.1016/j.jocs.2018.06.009.
S. B. Belhaouari, A. Islam, K. Kassoul, A. Al-Fuqaha, and A. Bouzerdoum, “Oversampling techniques for imbalanced data in regression,” Expert Syst. Appl., vol. 252, no. PB, p. 124118, 2024, doi: 10.1016/j.eswa.2024.124118.
M. Lutfi, A. T. Arsanto, M. F. Amrulloh, and U. Kulsum, “Penanganan Data Tidak Seimbang Menggunakan Hybrid Method Resampling Pada Algoritma Naive Bayes Untuk Software Defect Prediction,” Informatics J., vol. 8, no. 2, 2023.
E. P. Kondy, S. Siswanto, and N. Ilyas, “Data Balancing Approach Using Combine Sampling on Sentiment Analysis With K - Nearest Neighbor,” Sist. J. Sist. Inf., vol. 13, pp. 1836–1851, 2024.
T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, “Defect prediction from static code features: Current results, limitations, new approaches,” Autom. Softw. Eng., vol. 17, no. 4, pp. 375–407, 2010, doi: 10.1007/s10515-010-0069-5.
S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models for software defect prediction: A proposed framework and novel findings,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496, 2008, doi: 10.1109/TSE.2008.35.
S. A. Putri, “Prediksi Cacat Software Dengan Teknik Sampel Dan Seleksi Fitur Pada Bayesian Network,” J. Kaji. Ilm., vol. 19, no. 1, p. 17, 2019, doi: 10.31599/jki.v19i1.314.
J. F. Díez-Pastor, J. J. Rodríguez, C. García-Osorio, and L. I. Kuncheva, “Random Balance: Ensembles of variable priors classifiers for imbalanced data,” Knowledge-Based Syst., vol. 85, no. May, pp. 96–111, 2015, doi: 10.1016/j.knosys.2015.04.022.
Z. Xu, D. Shen, T. Nie, and Y. Kou, “A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data,” J. Biomed. Inform., vol. 107, no. June, p. 103465, 2020, doi: 10.1016/j.jbi.2020.103465.
L. Jiang, L. Zhang, L. Yu, and D. Wang, “Class-specific attribute weighted naive Bayes,” Pattern Recognit., vol. 88, pp. 321–330, 2019, doi: 10.1016/j.patcog.2018.11.032.
T. T. H. Le, Y. Shin, M. Kim, and H. Kim, “Towards unbalanced multiclass intrusion detection with hybrid sampling methods and ensemble classification,” Appl. Soft Comput., vol. 157, no. February, p. 111517, 2024, doi: 10.1016/j.asoc.2024.111517.
C. Cassidy, “Parameter tuning Naïve Bayes for automatic patent classification,” World Pat. Inf., vol. 61, no. March, p. 101968, 2020, doi: 10.1016/j.wpi.2020.101968.
M. A. Latief, L. R. Nabila, W. Miftakhurrahman, S. Ma, H. Tantyoko, and M. A. Latief, “Handling Imbalance Data Using Hybrid Sampling SMOTE-ENN in Lung Cancer Classification Corresponding Author :,” vol. 3, no. 1, pp. 11–18, 2024, doi: 10.30812/IJECSA.v3i1.3758.
DOI: https://doi.org/10.32520/stmsi.v13i6.4719
Article Metrics
Abstract view : 28 timesPDF - 18 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.