Analysis of Public Perception on Domestic Violence Cases using Support Vector Machine Algorithm

Mirdatul Husnah, Rahmat Hidayat

Abstract


Domestic violence is currently a case that is easily exposed by the public. People can easily find many cases through social media. The latest case was experienced by a social media influencer, Cut Intan. This case has attracted public attention and is widely discussed on several social media, one of which is on the X app. With this phenomenon, an analysis of public sentiment towards domestic violence cases that occur in Indonesia is needed. The analysis was conducted using the Support Vector Machine algorithm, a classification algorithm that can classify values into certain classes and has a good level of accuracy. Experiments on analyzing public sentiment towards domestic violence cases using the SVM algorithm resulted in an accuracy score of 95%. The precision score for negative sentiment is 94%, neutral sentiment is 100%, and positive sentiment is 100%. The recall result for negative sentiment is 100%, neutral sentiment is 67%, and positive sentiment has a value of 77%. The results of the f-1 score on negative sentiment are 97%, 80% neutral sentiment, and 87% positive sentiment. While the percentage of community sentiment obtained is 84.40% having negative sentiment, 8.24% having positive sentiment, and 7.36% having neutral sentiment.

References


R. Alimi and N. Nurwati, “Faktor Penyebab terjadinya Kekerasan dalam Rumah Tangga terhadap Perempuan.” Jurnal Pengabdian dan Penelitian Kepada Masyarakat (JPPM), pp. 20–27, 2024.

K. P. P. dan P. Anak, “Data Sistem Informasi Online Perlindungan Perempuan dan Anak (SIMFONI PPA) Kemen PPPA,” 2024, [Online]. Available: https://kekerasan.kemenpppa.go.id/ringkasan

S. P. Imanda, A. Putri, and Y. W. Pertiwi, “Psychological Well Being pada Korban Kekerasan dalam Rumah Tangga,” J. Publ. Ilmu Psikol., vol. 2, no. 3, pp. 261–274, 2024, [Online]. Available: http://dx.doi.org/10.1016/j.encep.2012.03.001

M Noor Farchan and Dian Alan, “Analisis Yuridis Tindak Pidana Kekerasan dalam Rumah Tangga yang Mengakibatkan Kematian,” J. Ris. Ilmu Huk., pp. 111–116, 2023, doi: 10.29313/jrih.v3i2.2998.

B. B. Leksono and A. Wibowo, “Kepolisian dan Penegakan Hukum Pidana terhadap Tindak Kekerasan dalam Rumah Tangga,” vol. 22, no. 2, pp. 190–206, 2024.

G. A. T. Panjaitan and L. Nurhadiyanto, “Kajian Perempuan sebagai Pelaku KDRT ditinjau dari Perspektif Victim Precipitation,” IKRA-ITH Hum. J. Sos. dan Hum., vol. 7, no. 3, pp. 49–58, 2023, doi: 10.37817/ikraith-humaniora.v7i3.3326.

Jesica and R. Zubaedah, “Penghapusan Kekerasan dalam Rumah Tangga (KDRT) terhadap Perempuan dan Anak,” J. Ilm. Wahana Pendidik., vol. 10, no. 11, pp. 308–315, 2024.

L. N. R. Indonesia, “Undang-Undang Penghapusan Kekerasan dalam Rumah Tangga,” UU PKDRT, no. 23, 2004.

K. Wahyuningsih, “Pemanfaatan Aplikasi Twitter dalam Menulis Teks Berita,” Pros. Senada (Seminar Nas. Daring), vol. 2, no. 1, pp. 998–1003, 2022.

M. Dynel, “The Pragmatics of Sharing Memes on Twitter.pdf.” Journal of Pragmatics, Elsevier, pp. 100–115, 2024.

R. N. Pamungkas, D. Permadi, and I. D. Florina, “Strategi Humor Gibran Rakabuming dalam Komunikasi Politik di Media Sosial X (Twitter),” Pemerintah. dan Polit., vol. 9, no. 3, pp. 175–182, 2024.

B. Liu, “Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Second Edition,” Sentim. Anal. Min. Opin. Sentim. Emot. Second Ed., no. May, pp. 1–432, 2020, doi: 10.1017/9781108639286.

C. Chazar and B. Erawan, “Machine Learning Diagnosis Kanker Payudara menggunakan Algoritma Support Vector Machine,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 12, no. 1, pp. 67–80, 2020, doi: 10.37424/informasi.v12i1.48.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen terhadap Layanan Indihome berdasarkan Twitter dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

B. A. Yuniarossy, K. M. Hindrayani, and A. T. Damaliana, “Analisis Sentimen terhadap Isu Feminisme di Twitter menggunakan Model Convolutional Neural Network (CNN),” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 5, no. 1, pp. 477–491, 2024, doi: 10.46306/lb.v5i1.585.




DOI: https://doi.org/10.32520/stmsi.v14i1.4724

Article Metrics

Abstract view : 52 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.