Comparison of Rating-based and Inset Lexicon-based Labeling in Sentiment Analysis using SVM (Case Study: GoBiz Application Reviews on Google Play Store)

Hiliah Firda, Pacu Putra, Nabila Rizky Oktadini, Putri Eka Sevtiyuni, Allsela Meiriza

Abstract


Digital transformation has impacted various sectors, including Micro, Small, and Medium Enterprises (MSMEs). GoBiz, a partner platform for Gojek's GoFood service, plays a crucial role in supporting MSME digitalization, making it essential to understand user perceptions of the application. This study conducts sentiment analysis on 5,000 GoBiz user reviews from the Google Play Store. It compares two labeling methods—Rating-Based and Inset Lexicon—and evaluates them using the Support Vector Machine (SVM) algorithm. The analysis process includes data selection, text preprocessing, data transformation using TF-IDF, SVM implementation with 10-fold cross-validation, and result visualization through word clouds. The findings indicate that the Rating-Based labeling method achieved an accuracy of 87%, with a precision of 86.7%, recall of 87.1%, and an F1-score of 86.8%. Meanwhile, the Inset Lexicon labeling method outperformed it, achieving an accuracy of 89.7%, precision of 89%, recall of 89.8%, and an F1-score of 89.3%. These results suggest that the combination of the Inset Lexicon labeling method and the SVM algorithm is more effective in classifying user sentiment and providing a more accurate understanding of user perceptions regarding the GoBiz application. Sentiment analysis results indicate that users appreciate GoBiz’s ease of operation but face challenges with driver services and advertisement features, highlighting areas for improvement to enhance user satisfaction.

Keywords


sentiment analysis; inset Lexicon; rating-based; GoBiz application; support vector machine

Full Text:

PDF

References


L. Xia, S. Baghaie, and S. M. Sajadi, “The Digital Economy: Challenges and Opportunities in the New Era of Technology and Electronic Communications,” Ain Shams Engineering Journal, vol. 15, no. 2, p. 102411, Feb. 2024, doi: 10.1016/J.ASEJ.2023.102411.

Google, Temasek, and Bain & Company, “ E-Conomy SEA 2023,” 2023. [Online]. Available: https://www.bain.com/insights/e-conomy-sea-2023/

GoBiz, “Solusi Terbaik untuk Kelola Bisnis Anda.” [Online]. Available: https://gobiz.co.id/

D. E. B. Jabat, L. L. Tarigan, M. Purba, and M. Purba, “Pemanfaatan Platform E-Commerce melalui Marketplace sebagai Upaya Peningkatan Penjualan,” Skylandsea Profesional Jurnal Ekonomi, Bisnis Dan Teknologi, vol. 2, no. 2, pp. 16–21, 2022.

A. Awaluddin, “Pengenalan Integritas Aplikasi Digital dalam Meningkatkan Kinerja Bisnis sebagai Upaya Mengefektifkan Manajemen,” Jurnal Syntax Admiration, vol. 5, no. 1, pp. 65–72, 2024.

M. Wankhade, C. Kulkarni, and A. C. S. Rao, “A Survey on Aspect base Sentiment Analysis Methods and Challenges,” Appl Soft Comput, vol. 167, p. 112249, Dec. 2024, doi: 10.1016/J.ASOC.2024.112249.

C. Dervenis, G. Kanakis, and P. Fitsilis, “Sentiment Analysis of Student Feedback: A Comparative Study Employing Lexicon and Machine Learning Techniques,” Studies in Educational Evaluation, vol. 83, p. 101406, Dec. 2024, doi: 10.1016/J.STUEDUC.2024.101406.

J. Iskandar and Y. Nataliani, “Perbandingan Naive Bayes, SVM, dan K-NN untuk Analisis Sentimen Gadget berbasis Aspek,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588.

M. F. N. Fathoni, E. Y. Puspaningrum, and A. N. Sihananto, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Modem: Jurnal Informatika dan Sains Teknologi., vol. 2, no. 3, pp. 62–76, 2024.

F. Y. Dharta, A. J. Mahardhani, S. R. Yahya, A. Dirsa, and E. M. Usulu, “Application of Naïve Bayes Classifier Method to Analyze Social Media User Sentiment Towards the Presidential Election Phase,” Jurnal Informasi dan Teknologi, pp. 176–181, 2024.

S. A. H. Bahtiar, C. K. Dewa, and A. Luthfi, “Comparison of Naive Bayes and Logistic Regression in Sentiment Analysis on Marketplace Reviews using Rating-Based Labeling,” Journal of Information Systems and Informatics, vol. 5, no. 3, pp. 915–927, 2023.

I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen terhadap Penggunaan Aplikasi Shopee menggunakan Algoritma Support Vector Machine (SVM),” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 32–35, 2023.

D. Nugraha and D. Gustian, “Analisis Sentimen Penggunaan Aplikasi Transportasi Online pada Ulasan Google Play Store dengan Metode Naive Bayes Classifier,” Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 5, no. 1, pp. 326–335, 2024.

R. A. L. A. Renal and S. Alam, “Komparasi Payment Digital untuk Analisis Sentimen berdasarkan Ulasan di Google Playstore menggunakan Metode Support Vector Machine,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 118–128, 2023.

S. S. Maulidah, “Analisis Sentimen terhadap Brand Reputation Super Apps Gojek dan Grab di Indonesia menggunakan Algoritma Machine Learning,” UIN Syarif Hidayatullah, Jakarta, 2024. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/76407

S. A. Ashari, M. W. A. Saputra, E. Larosa, and B. S. Rijal, “Analisis Sentimen pada Aplikasi Translate Google menggunakan Metode SVM (Studi Kasus: Komentar pada Play Store),” Jurnal Teknik, vol. 21, no. 2, pp. 168–182, 2023.

P. Cahyani and L. Abdillah, “Perbandingan Performa Algoritma Naive Bayes, SVM, dan Random Forest: Studi Kasus Analisis Sentimen Pengguna Sosial Media X,” KALBIScientia Jurnal Sains dan Teknologi, vol. 11, no. 02, pp. 12–21, 2024.

V. Pichiyan, S. Muthulingam, G. Sathar, S. Nalajala, A. Ch, and M. N. Das, “Web Scraping using Natural Language Processing: Exploiting Unstructured Text for Data Extraction and Analysis,” Procedia Comput Sci, vol. 230, pp. 193–202, Jan. 2023, doi: 10.1016/J.PROCS.2023.12.074.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” Jurnal Media Informatika Budidarma, vol. 5, no. 2, pp. 406–414, 2021.

M. R. Hanafi and R. K. R, “Analisis Sentimen pada Ulasan Aplikasi Sirekap di Google Play menggunakan Algoritma Naive Bayes,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1578–1586, 2024.

N. Saad, A. Abidi, Z. Yaacod, M. Ali, and K. Zhu, “Twitter Sentiment Analysis on Meta: a Lexicon-based Analysis using RapidMiner,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 11, pp. 259–270, Jul. 2023, doi: 10.17762/ijritcc.v11i6.7561.

S. Fransiska, R. Rianto, and A. I. Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Scientific Journal of Informatics, vol. 7, no. 2, pp. 203–212, 2020.

A. V. D. Sano, A. A. Stefanus, E. D. Madyatmadja, H. Nindito, A. Purnomo, and C. P. M. Sianipar, “Proposing a Visualized Comparative Review Analysis Model on Tourism Domain using Naive Bayes Classifier,” Procedia Comput Sci, vol. 227, pp. 482–489, Jan. 2023, doi: 10.1016/J.PROCS.2023.10.549.

M. Tajrian, A. Rahman, M. A. Kabir, and M. R. Islam, “Analysis of Child Development Facts and Myths using Text Mining Techniques and Classification Models,” Heliyon, vol. 10, no. 17, p. e36652, Sep. 2024, doi: 10.1016/J.HELIYON.2024.E36652.

F. Koto and G. Y. Rahmaningtyas, “Inset Lexicon: Evaluation of a Word List for Indonesian Sentiment Analysis in Microblogs,” in 2017 International Conference on Asian Language Processing (IALP), 2017, pp. 391–394. doi: 10.1109/IALP.2017.8300625.

P. A. Henríquez and F. Alessandri, “Analyzing Digital Societal Interactions and Sentiment Classification in Twitter (X) during Critical Events in Chile,” Heliyon, vol. 10, no. 12, p. e32572, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e32572.

S. N. Rismanah, R. Astuti, and F. M. Basysyar, “Penerapan Algoritma Support Vector Machine dalam menganalisis Sentimen Ulasan Pelanggan ShopeeFood berdasarkan Twitter,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 406–412, 2024.

M. Rahardi, A. Aminuddin, F. F. Abdulloh, and R. A. Nugroho, “Sentiment Analysis of COVID-19 Vaccination using Support Vector Machine in Indonesia,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, 2022.

A. M. Ndapamuri, D. Manongga, and A. Iriani, “Analisis Sentimen Ulasan Aplikasi Tripadvisor dengan Metode Support Vector Machine, K-Nearest Neighbor, dan Naive Bayes,” Jurnal Inovtek Polbeng Seri Informatika, vol. 8, no. 1, pp. 127–140, 2023.

N. I. Wijayanti, I. P. E. N. Kencana, and I. W. Sumarjaya, “SMOTE: Potensi dan Kekurangannya pada Survei,” E-Jurnal Matematika, vol. 10, p. 235, Nov. 2021, doi: 10.24843/MTK.2021.v10.i04.p348.

K. Setyo Nugroho, A. Sukmadewa, H. DW, F. Bachtiar, and N. Yudistira, “BERT Fine-Tuning for Sentiment Analysis on Indonesian Mobile Apps Reviews.” 2021. doi: 10.48550/arXiv.2107.06802.




DOI: https://doi.org/10.32520/stmsi.v14i2.4795

Article Metrics

Abstract view : 263 times
PDF - 116 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.