Integrating K-Means Clustering and K-Nearest Neighbor Classification for Effective Scholarship Recipient Selection

Suandi Daulay, Rizky Wandri

Abstract


This research is important because public interest in the KIP Kuliah Scholarship continues to increase. However, many educational institutions still use manual selection which is prone to bias and less effective in data management. Therefore, a method is required to make the selection process more efficient; the K-Means and K-Nearest Neighbor methods are two data processing methods that have been proven effective in various applications, including in the field of data processing. In this study, the K-Means and K-Nearest Neighbor methods are used to select scholarship recipients to increase efficiency in the process. Based on the processing carried out, there were 1257 participants who were then grouped into three clusters: Cluster 0 with 739 data points, Cluster 1 with 290 data points, and Cluster 2 with 228 data points. Testing using the K-Nearest Neighbor algorithm was carried out by evaluating the appropriate k values, specifically 27, 31, 35, 41, 45, and expanded to 185 to obtain the optimal value, namely K-155 and produced as many as 155 people who were deemed worthy and qualified according to the specified criteria. The combination of K-Means and K-NN algorithms resulted in an accuracy of 89.72% accomplished in 16 seconds. This combo can recognize data with excellent accuracy in a fast time while minimizing errors. The test results suggest that this technique is effective in selecting applicants based on the criteria and quotas established, thus it can be used as a guideline for future selection.

Keywords


Scholarship selection, smart indonesia program, KIP college scholarship, k-means method, k-nearest neighbor method

Full Text:

PDF

References


Y. Saputra, D. Jaelani, and E. S. Nurpajriah, “Implementasi Algoritma Smart untuk Beasiswa Kip-K di Perguruan Tinggi (Studi Kasus: UIN Sunan Gunung Djati Bandung),” Jurnal Sistem Informasi Dan Bisnis Cerdas, vol. 17, no. 1, pp. 59–71, 2024.

N. Indriyani, A. Fauzi, A. Bayu, and H. Yanto, “Pemodelan Prediksi Penerima Beasiswa KIP Kuliah menggunakan Metode Weight Product,” 2024. [Online]. Available: http://jurnal.bsi.ac.id/index.php/imtechno

M. Safii and Amanda, “Optimisasi Algoritma MOOSRA pada Seleksi Penerima Beasiswa KIP Kuliah,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer) , vol. 22, no. 2, pp. 555–561, 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jis/index

N. W. A. Ulandari, N. L. G. P. Suwirmayanti, and I. P. W. Putra, “Seleksi Penerima Beasiswa pada ITB STIKOM Bali dengan Metode Weighted Aggregated Sum Product Assessment,” Jurnal Teknik Informatika Unika ST. Thomas (JTIUST), vol. 08, no. 01, pp. 2657–1501, 2023.

M. D. V. Elvira, I. Muda, and A. Suharyanto, “Implementasi Peraturan Menteri Pendidikan dan Kebudayaan Nomor 10 Tahun 2020 tentang Program Indonesia Pintar pada SMAN 4 Kisaran Kabupaten Asahan,” Strukturasi: Jurnal Ilmiah Magister Administrasi Publik, vol. 4, no. 1, pp. 87–95, 2022, doi: 10.31289/strukturasi.v4i1.1187.

Z. Saputra, D. Sartika, and M. H. Irfani, “Prediksi Calon Mahasiswa Penerima KIP pada Universitas Indo Global Mandiri menggunakan Algoritma Decision Tree,” RESOLUSI : Rekayasa Teknik Informatika dan Informasi, vol. 4, no. 3, pp. 231–240, 2024, [Online]. Available: https://docs.python.org/3.13/tutorial/index.html

P. Apriyani Br Rangkuti et al., “Manajemen Pengelolaan Keuangan Mahasiswa Penerima Beasiswa KIP Kota Medan (Studi Kasus Mahasiswa di Kota Medan),” Jurnal Akuntansi Keuangan dan Bisnis, vol. 1, no. 2, pp. 38–43, 2023, [Online]. Available: https://jurnal.ittc.web.id/index.php/jakbs/index

H. Kesuma and S. Hamidani, “Penerapan Data Mining menggunakan Algoritma K- Means Clustering dalam Pengelompokan Penerima Beasiswa KIP Kuliah,” Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya Lubuklinggau, vol. 5, no. 1, pp. 86–92, Apr. 2023, doi: 10.52303/jb.v5i1.102.

N. Haryanti, M. Hasanah, and S. Utami, “Pengaruh Game Online terhadap Prestasi Belajar dan Motivasi Belajar Siswa MI Miftahul Huda Sedang Tulung Agung,” Bahasa dan Pendidikan, vol. 2, no. 3, pp. 131–138, 2022.

A. Hanafiah, H. O. Nasution, Y. Arta, and R. Wandri, “Perkembangan Portal Informasi berbasis Website Di SMK YKWI Pekanbaru,” Jurnal Pengabdian Masyarakat dan Penerapan Ilmu Pengetahuan, vol. 5, no. 1, pp. 14–18, 2024.

E. Indriati, N. ’ Ainun, S. Azisa, E. I. Sihombing, Z. Sukma, and D. Mokodompit, “Implementasi Algoritma K-Means Clustering untuk Pengelompokan Status Penerima KIP Kuliah Mahasiswa Universitas Papua,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 6, pp. 3458–3463, 2023.

E. Novianto, A. Hermawan, and D. Avianto, “Perbandingan Metode K-Nearest Neighbor dan Support Vector Machine untuk memprediksi Penerima Beasiswa Keringanan UKT,” Jurnal Media Informatika Budidarma, vol. 8, no. 1, pp. 654–662, 2024, doi: 10.30865/mib.v8i1.6913.

R. Wandri, Y. Arta, A. Hanafiah, and R. Oktaviani, “Prediction of Student Scholarship Recipients using the K-Means Algorithm and C4,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 1, pp. 74–88, 2023.

N. S. Ngaeni and K. Kusrini, “Analisis Kombinasi Algoritma K-Means Clustering dan TOPSIS untuk menentukan Pendekatan Strategi Marketing berdasarkan Background Target Audiens,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 2, pp. 393–403, 2024, doi: 10.47065/josyc.v5i2.4948.

I. Irawan, U. Rizki, P. M. Jakak, M. B. Prayogi, and M. Rahman, “Penerapan Metode K-Means Clustering dalam Pengembangan Strategi Promosi berbasis Data Penerimaan Mahasiswa Baru (Studi Kasus :Universitas Nurul Huda),” 2024.

J. Faran and R. T. Aldisa, “Perbandingan Algoritma K-Means dan K-Medoids dalam Pengelompokan Kelas untuk Mahasiswa Baru Program Magister,” Journal of Information System Research, vol. 5, no. 2, pp. 509–519, 2024, doi: 10.47065/josh.v5i2.4753.

L. Awaliyah, N. Rahaningsih, and R. D. Dana, “Implementasi Algoritma K-Means dalam Analisis Cluster Korban Kekerasan di Provinsi Jawa Barat,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 1, pp. 188–195, 2024.

N. L. Putri, B. Warsito, and B. Surarso, “Pengaruh Klasifikasi Sentimen pada Ulasan Produk Amazon berbasis Rekayasa Fitur dan <i>K-Nearest Negihbor </i>,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 1, pp. 65–74, Feb. 2024, doi: 10.25126/jtiik.20241117376.

M. Fauzan and S. Kurnia Gusti, “Penerapan Seleksi Fitur untuk Klasifikasi Penerima Bantuan Sosial Pangkalan Sesai menggunakan Metode K-Nearest Neighbor,” Jurnal Sistem Komputer dan Informatika (JSON) Hal: 1−, vol. 10, no. 1, 2023, doi: 10.30865/json.v5i1.6654.

A. N. Ikhsan, P. Subarkah, and R. S. Alifian, “Komparasi Algoritme K-NN, Naïve Bayes, dan Cart untuk memprediksi Penerima Beasiswa,” JST (Jurnal Sains dan Teknologi), vol. 12, no. 2, Oct. 2023, doi: 10.23887/jstundiksha.v12i2.51745.

F. Karepesina and L. Zahrotun, “Penerapan Data Mining untuk Penentuan Penerima Beasiswa dengan Metode K-Nearest Neighbor (K-NN),” Techno, vol. 24, no. 1, pp. 1–9, 2023.

H. Saleh, “K-Nearest Neighbor berbasis Seleksi Atribut Chi Square untuk Klasifikasi Penerima Beasiswa Kurang Mampu,” Jurnal SIMETRIS, vol. 14, no. 1, pp. 39–47, 2023.

T. Xie et al., “Application of the Improved K-Nearest Neighbor-based Multi-Model Ensemble Method for Runoff Prediction,” Water (Switzerland), vol. 16, no. 1, Jan. 2024, doi: 10.3390/w16010069.

R. Aprilian, R. Habibi, and M. Y. H. Setyawan, Algoritma KNN dalam memprediksi Cuaca untuk menentukan Tanaman yang Cocok sesuai Musim. Kreatif, 2020.

U. Hidayah, A. Sifaunajah, and M. Kom, Cara Mudah memahami Algoritma K-Nearest Neighbor Studi Kasus Visual Basic 6.0. Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas KH. A. Wahab …, 2019.

U. O. R. Permatasari, W. J. Shudiq, and M. Jasri, “Prediksi Kelayakan Mahasiswa sebagai Penerima Beasiswa Bank Indonesia pada Tahap Seleksi Administrasi di Universitas Nurul Jadid menggunakan Algoritma K Nearest Neighbor,” Journal homepage: Journal of Electrical Engineering and Computer (JEECOM), vol. 06, no. 01, Apr. 2024, doi: 10.33650/jeecom.v4i2.

A. O. R. Rodríguez, M. A. Riaño, P. A. G. García, and C. E. M. Marín, “Application of Learning Analytics for Sequential Patterns Detection Associated with Moments of Distraction in Students in E‐learning Platforms,” Computer Applications in Engineering Education, vol. 32, no. 1, 2023, doi: 10.1002/cae.22682.

D. Munandar, B. N. Ruchjana, and A. S. Abdullah, “Principal Component Analysis-Vector Autoregressive Integrated (Pca-Vari) Model using Data Mining Approach to Climate Data in the West Java Region,” Barekeng Jurnal Ilmu Matematika Dan Terapan, vol. 16, no. 1, pp. 099–112, 2022, doi: 10.30598/barekengvol16iss1pp099-112.

U. O. R. Permatasari, W. J. Shudiq, and M. Jasri, “Prediksi Kelayakan Mahasiswa sebagai Penerima Beasiswa Bank Indonesia pada Tahap Seleksi Administrasi di Universitas Nurul Jadid menggunakan Algoritma K Nearest Neighbor,” Journal homepage: Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 1, pp. 252–260, 2024, doi: 10.33650/jeecom.v4i2.

S. Daulay, W. Apriani, and Y. Perwira, “Application of Data Mining for Prediction of Students Out of College Algorithm C4.5,” Jurnal ICT : Information and Communication Technologies, vol. 13, no. 1, pp. 2086–7867, 2022.

E. Buulolo, Data Mining untuk Perguruan Tinggi. Deepublish, 2020.

D. Anggraeni and R. Rizaldi, “K-Means Clustering Calculation to Determine Mainstream Domination of Courses,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 10, no. 1, pp. 193–198, 2023.

A. Rykov, R. C. De Amorim, V. Makarenkov, and B. Mirkin, “Inertia-based Indices to Determine the Number of Clusters in K-Means: An Experimental Evaluation,” IEEE Access, 2024.

G. Gunadi, “Penerapan Algoritma K-Means Clustering untuk menganalisa Transaksi Penjualan Jasa Cetak pada Unit Print on Demand (Pod) Percetakan Gramedia,” Infotech Journal of Technology Information, vol. 8, no. 2, pp. 117–126, 2022, doi: 10.37365/jti.v8i2.148.

A. Al Masykur, S. K. Gusti, S. Sanjaya, F. Yanto, and F. Syafria, “Penerapan Metode K-Means Clustering untuk Pemetaan Pengelompokan Lahan Produksi Tandan Buah Segar,” Jurnal Informatika, vol. 10, no. 1, 2023, doi: 10.31294/inf.v10i1.15621.

G. Feng, M. Fan, and C. Yu, “Analysis and Prediction if Students’ Academic Performance based in Educational Data Mining,” IEEE Access, vol. 10, pp. 19558–19571, 2022, doi: 10.1109/access.2022.3151652.

F. Marisa, A. R. Wardhani, W. Purnomowati, A. V. Vitianingsih, A. L. Maukar, and E. W. Puspitarini, “Potential Customer Analysis using K-Means With Elbow Method,” Jiko (Jurnal Informatika Dan Komputer), vol. 7, no. 2, p. 307, 2023, doi: 10.26798/jiko.v7i2.911.

P. Violita, G. J. Yanris, and M. N. S. Hasibuan, “Analysis of Visitor Satisfaction Levels using the K-Nearest Neighbor Method,” SinkrOn, vol. 8, no. 2, pp. 898–914, Apr. 2023, doi: 10.33395/sinkron.v8i2.12257.

R. N. Angraeni, B. Priyatna, A. Hananto, and S. S. Hilabi, “Application of the K-Nearest Neighbor Method to Predict Demand for Goods from Customers at PT Sinergi Prima Enjineering,” Instal : Jurnal Komputer, vol. 16, no. 02, pp. 99–109, Jun. 2024, doi: 10.54209/jurnalinstall.v16i02.200.

A. S. Paramita, I. Maryati, and L. M. Tjahjono, “Implementation of the K-Nearest Neighbor Algorithm for the Classification of Student Thesis Subjects,” Journal of Applied Data Sciences, vol. 3, no. 3, pp. 128–136, 2022.

E. Gavagsaz, “Efficient Parallel Processing of k-Nearest Neighbor Queries by using a Centroid-based and Hierarchical Clustering Algorithm,” Artificial Intelligence Advances, vol. 4, no. 1, pp. 26–41, May 2022, doi: 10.30564/aia.v4i1.4668.

E. Buulolo, Data Mining untuk Perguruan Tinggi. Deepublish, 2020.

D. S. F. Azzahrah and A. Alamsyah, “Comparison of Probabilistic Neural Network (PNN) and k-Nearest Neighbor (k-NN) Algorithms for Diabetes Classification,” Recursive Journal of Informatics, vol. 1, no. 2, pp. 73–82, Sep. 2023, doi: 10.15294/rji.v1i2.66078.

K. Tingkat et al., “Classification of The Severity 0f Traffic Accident Victims in the City of Samarinda uses the K-Nearest Neighbor and Naive Bayes Algorithms,” Jurnal EKSPONENSIAL, vol. 14, no. 2, 2023, [Online]. Available: http://jurnal.fmipa.unmul.ac.id/index.php/exponensial99

Riana, M. I. Mazdadi, I. Budiman, Muliadi, and R. Herteno, “Implementation of Information Gain and Particle Swarm Optimization on Sentiment Analysis of Covid-19 Handling using K-NN,” Jurnal Informatika dan Komputer) Accredited KEMENDIKBUD RISTEK, vol. 6, no. 1, 2023, doi: 10.33387/jiko.v6i1.5260.

A. Faturrahmi, Zamahsary Martha, Y. Kurniawati, and F. Fitri, “Sentiment Analysis of Prabowo Subianto as 2024 Presidential Candidate on Twitter using K-Nearest Neighbor Algorithm,” UNP Journal of Statistics and Data Science, vol. 1, no. 5, pp. 385–391, Nov. 2023, doi: 10.24036/ujsds/vol1-iss5/101.

L. Xiang, Y. Xu, J. Cui, Y. Liu, R. Wang, and G. Li, “GM (1, 1)-based Weighted K-Nearest Neighbor Algorithm for Indoor Localization,” Remote Sens (Basel), vol. 15, no. 15, p. 3706, 2023.

C. M. Huerta, A. S. Atahua, and J. V. Guerrero, “Data Mining: Application of Digital Marketing in Education,” Advances in Mobile Learning Educational Research, vol. 3, no. 1, pp. 621–629, 2023, doi: 10.25082/amler.2023.01.011.




DOI: https://doi.org/10.32520/stmsi.v14i1.4818

Article Metrics

Abstract view : 34 times
PDF - 16 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.