Implementation of Fuzzy Time Series Markov Chain Method to Predict Electricity Consumption in Aceh Province

Virza Gavinda, Nurdin Nurdin, Fajriana Fajriana

Abstract


The use of electrical energy is expected to always increase every year. This is due to the increasing needs of the community that must be met. Electricity has become the foundation for welfare and economic progress as well as a growth engine both domestically and globally, to meet the need for electrical energy in the future so that a system is needed that can predict future electrical energy consumption. Various prediction methods have developed along with the problems that arise. These methods include the Fuzzy Time Series Markov Chain method and the Markov Chain Monte Carlo method. This study aims to apply the Fuzzy Time Series Markov Chain (FTSMC) method to predict electricity consumption (KWH) in Aceh Province until 2030 using the electricity consumption dataset from 2018 to 2022. The FTSMC method combines fuzzy time series modeling with Markov chain state transitions, allowing for effective handling of uncertainty in time series data. The results reveal an impressive forecast accuracy, with a Mean Absolute Percentage Error (MAPE) of 3.2483%, demonstrating the model’s robustness and suitability for electricity consumption forecasting, with a predicted 314,606,308 kWh in January 2023 and 482,982,495 kWh in December 2030, representing an overall increase of 53.5% over the eight-year period. The FTSMC model effectively stabilizes predictions over time, ultimately converging to a stable value. This stability suggests that FTSMC is well-suited for forecasting in contexts where historical patterns are expected to persist. Further application of this model could benefit other sectors requiring accurate, stable forecasts.

Keywords


Fuzzy Time Series; Markov Chain; Electricity Consumption; Forecasting; MAPE

Full Text:

PDF

References


N. Alter and S. H. Syed, “An Empirical Analysis of Electricity Demand in Pakistan,” International Journal of Energy Economics and Policy, Vol. 1, No. 4, pp. 116–139, 2011.

Y. T. Nugraha, “Analisis Perkiraan Konsumsi Energi Listrik di Sumatera Utara pada Tahun 2032 menggunakan Metode Adaptive Neuro Fuzzy Inference System,” Tesis Program Magister Teknik Elektro. Universitas Muhammadiyah Sumatera Utara, 2019.

International Energy Agency, “Scaling up Renewables in the Java-Bali Power System: A Case Study,” 2022. Retrieved October 12, 2022, from https://www.iea. org/articles/scaling-up-Renewables-in-the-Java-Bali-Power-System-a-Case- Study.

D. Mulyani, and D. Hartono, “Pengaruh Efisiensi Energi Listrik pada Sektor Industri dan Komersial terhadap Permintaan Listrik di Indonesia,” Jurnal Ekonomi Kuantitatif Terapan, 1, 2018. https://doi.org/10.24843/jekt.2018.v11. i01.p01.

Kesdm, “Rencana Usaha Penyediaan Tenaga Listrik PT Perusahaan Listrik Negara (Persero) Tahun2017 S.D. 2026 (Tech. Rep.), “Kementerian Energi dan Sumber Daya Mineral. Jakarta, 2017.

S. M. Ross, “Introduction to Probability Models,” Elsevier Inc, 2020.

B. Walsh, “Markov Chain Monte Carlo and Gibbs Sampling,” In Lecture notes for eeb 581, 2004.

M. Hariadi, A. A. Muhammad, and S.M.S. Nugroho, “Prediction of Stock Prices using Markov Chain Monte Carlo,” Proceeding: International Conference on Computer Engineering, Network, and Intelligent Multimedia 2020, (Cenim 2020), 385–390, 2020. https://doi.org/ 10.1109/CENIM51130.2020.9297965.

N. Nurdin, F.Fadlisyah,“Soft Computing Konsep dan Penerapannya,” Unimal Press, Lhokseumawe, 2016.

D. S. Insani, B. Badriana, and M. Daud, “Analisis Peramalan Kebutuhan Energi Listrik untuk Kabupaten Bireuen menggunakan Perangkat Lunak LEAP,” Jurnal Nasional Teknik Elektro, Vol. 8, No.1, 32, 2019. https://doi.org/10.25077/ jnte.v8n1.608.2019.

A. M. Pardede, N. Nurdin, D. Abdullah, C. I. Erliana, R. D. Dana, A. R. Dikananda, F. Fasya, N. Rahaningsih, M. Andriani, P. Subekti, E. Elisa, Sohibun, Noor Hasan Siregar, M. Ponidi, E. Winarno, and I. Ketut Sudarsana, ”Application of Data Mining Prediction of Electricity Deviation Flow using Metode Backpropogation at PLN Binjai Area. Journal of Physics: Conference Series, 1363(1), 2019. https://doi.org/10.1088/ 1742-6596/1363/1/012067.

Y. Tri Nugraha, M. F. Zambak, and A. Hasibuan, “Perkiraan Konsumsi Energi Listrik di Aceh pada Tahun 2028 menggunakan Metode Adaptive Neuro Fuzzy Inference System,” CESS (Journal of Computer Engineering, System and Science), Vol. 5, No.1, 104, 2020. https://doi.org/10.24114/cess.v5i1.15624.

T. I. Janwardi, “Prediksi Peningkatan Kebutuhan Tenaga Listrik Provinsi Jambi Tahun 2020-2025,” Jurnal Elektronika Listrik dan Teknologi Informasi Terapan, Vol. 2, No.1, 21, 2020. https://doi.org/10.37338/e.v2i1.125.

P. H. T. Hutabarat, and M. F. Zambak, “Prediction of Electricity Need for The PLN Area in Parapat Simalungun City Until 2024,” Journal of Electrical and System Control Engineering, Vol. 5, No.2, 2022.

I. Handhayani, T. N. Daru, and Eko, “Prediksi Konsumsi Energi Listrik Tahun 2015-2020 menggunakan Perangkat Lunak Leap (Long-Range Energy Alternative Planning System) di UPJ Purbalingga,” EPSILON: Journal of Electrical Engineering and Information Technology, Vol. 20, No.1, pp. 50–62, 2022. https://doi.org/10.55893/epsilon.v20i1.83.

R. C. Tsaur, “Application to Forecast the Exchange Rate,” Journal International Computing, Innovative, Vol. 8, No.7, pp. 4931–4942, 2022.

B. R. D. P. Aliek, M. Hafiyusholeh, N. Ulinnuha, and F. Setiawan, “Penerapan Model FTS-Markov Chain untuk Peramalan Cuaca di Jalur Penyeberangan Gresik-Bawean,” Prosiding Seminar Nasional Integrasi Matematika dan Nilai Islami, Vol. 2, No. 1, pp.1–9, 2018.

B. D. Saputra, “A Fuzzy Time Series-Markov Chain Model to Forecast Fish Farming Product,” Jurnal Kursor, Vol. 9, No. 4, pp. 129–138, 2019. https://doi.org/10.28961/kursor. v9i4.167.

A. Sri Bintang, W. C. Huang, and R. Asmara, “Forecasting of Indonesia Seaweed Export: A Comparison of Fuzzy Time Series with and without Markov Chain,” Agricultural Social Economic Journal, Vol. 19, No. 3, pp. 155–164, 2019. https://doi.org/10.21776/ub.agrise.2019.019.3.4.

K. Ramadani, and D. Devianto, “The Forecasting Model of Bitcoin Price with Fuzzy Time Series Markov Chain and Chen Logical Method. AIP Conference Proceedings, 2296, (November), 2020. https://doi.org/10.1063/5.0032178.

D. Permana, and I. A. Fitri, “Application of Fuzzy Time Series-Markov Chain Method in Forecasting Data of Exchange Rate Riyal-Rupiah,” Journal of Physics: Conference Series, 1554(1), 2020. https://doi.org/10.1088/1742- 6596/ 1554/1/012005.

M. N. Mubarrok, U. W. Nuryanto, R. Fika, P. Adi, and A. E. Tanati, “Fuzzy Time Series Markov Chain for Rice Production Forecasting,” Budapest International Research and Critics Institute-Journal (BIRCI-Journal) Volume, Vol. 5, No. 3, pp. 27148–27154, 2022 https://doi.org/10.33258/birci.v5i3.6757.

Y. Alyousifi, M. Othman, R. Sokkalingam, I. Faye, and P.C.L. Silva, "Predicting Daily Air Pollution Index based on Fuzzy Time Series Markov Chain Model," Symmetry, Vol. 12, No. 2, p. 293, 2020.

V. Gavinda, N. Nurdin, and F. Fajriana, “Predicting Electricity Consumption in Aceh Province using the Markov Chain Monte Carlo Method,” International Journal of Engineering, Science and Information Technology, Vol. 5, No. 1, pp. 128-136, Jan. 2025.

R. Arinanda, N. Afnisah, and F. Marpaung, "A Comparison of the Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan," Journal of Physics: Conference Series, Vol. 1462, p. 012044, 2020.

S. Hariyanto, Y. D. Sumanto, S. Khabibah, and Zaenurrohman, "Average-based Fuzzy Time Series Markov Chain based on Frequency Density Partitioning," Journal of Applied Mathematics, Vol. 2023, Art. No. 9319883, 2023.

Zaenuddin, "Time Series Analysis for Forecasting Dynamic Data," Journal of Statistical Methods, Vol. 8, No. 1, pp. 34-45, 2020.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 5th ed., New York, NY, USA: Wiley, 2015.




DOI: https://doi.org/10.32520/stmsi.v14i5.4858

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.