Sentiment Analysis on Android Applications using MediaPipe for Text Classification

Kadek Febry Ardika, Joko Dwi Santoso

Abstract


Sentiment analysis is an important process for understanding public opinion on various issues discussed on social media. This study aims to develop an Android application that utilizes MediaPipe for text classification based on sentiment. MediaPipe is used as a framework for feature extraction, which is then analyzed using machine learning models. The study employs a real-time design approach to support efficient text processing on devices with limited resources. The testing results show that the application achieves high accuracy in classifying positive, negative, and neutral text. These findings suggest that MediaPipe can be an effective solution for sentiment analysis on mobile devices. This research makes a significant contribution to public opinion analysis technology by introducing an efficient, adaptive, and scalable approach.

Keywords


Sentiment Analysis, MediaPipe, Android Application, Text Classification, Androin APP

Full Text:

PDF

References


Nurwanda, N. Suarna, dan W. Prihartono, “Penerapan NLP (Natural Languange Processing) dalam Analisis Sentimen Pengguna Telegram di Playstore,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 2, hlm. 1841–1846, Apr 2024, doi: https://doi.org/10.36040/jati.v8i2.8469.

I. G. B. Arya Budaya, L. P. Safitri Pratiwi, dan D. P. Agustino, “Klasifikasi Sentimen untuk Analisis Kepuasan Pelayanan Puskesmas berbasis Arsitektur LSTM,” Smart Comp, vol. 12, no. 4, hlm. 941–948, Okt 2023, doi: https://doi.org/10.30591/smartcomp.v12i4.5361.

S. E. Rahmadania, “Implementation Of Good Corporate Governance Principles In PT. X As A Transport Service Company Jakarta - Kalimantan,” Dijms : Dinasti International Journal of Management Science, vol. 1, no. 6, hlm. 844–853, Jul 2020, doi: 10.31933/DIJMS.

D. Suryadi, C. S. Octiva, T. I. Fajri, U. W. Nuryanto, dan M. L. Hakim, “Optimasi Kinerja Sistem IoT menggunakan Teknik Edge Computing,” Jurnal Minfo Polgan, vol. 13, no. 2, hlm. 1456–1461, Sep 2024, doi: 10.33395/jmp.v13i2.14102.

Suhendra dan F. Selly Pratiwi, “Peran Komunikasi Digital dalam Pembentukan Opini Publik: Studi Kasus Media Sosial,” IAPA | Universitas Sriwijaya Prosiding: Resiliensi Indonesia dalam Pusaran Disrupsi Global, hlm. 293–315, Okt 2024, doi: 10.30589/proceedings.2024.1059.

F. Lukmanul Hakim dan K. Evita Dewi, “Analisis Sentimen berbasis Aspek terhadap Produk Kecantikan menggunakan Neighbor Weighted K-Nearest Neighbor,” Komputa : Jurnal Ilmiah Komputer dan Informatika, vol. 13, no. 1, hlm. 1–10, Apr 2024, doi: https://doi.org/10.34010/komputa.v13i1.9437.

V. Bengani, “Hybrid Learning Systems: Integrating Traditional Machine Learning with Deep Learning Techniques,” Department of Computer Science, Apex University, hlm. 0–122, 2024, doi: 10.13140/RG.2.2.11199.73122.

A. Reza Satria, S. Adinugroho, dan Suprapto, “Analisis Sentimen Ulasan Aplikasi Mobile menggunakan Algoritma Gabungan Naïve Bayes dan C4.5 berbasis Normalisasi Kata Levenshtein Distance,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 11, hlm. 4154–4163, Nov 2020, Diakses: 15 Januari 2025. [Daring]. tersedia pada: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8270

V. M. Dinata, A. Wedi, dan O. Fajarianto, “Pengembangan Model Pembelajaran Adaptif dengan Implementasi Learning Analytics berdasarkan Gaya Belajar VARK,” Didaktika: Jurnal Kependidikan, vol. 13, no. 4, hlm. 177–186, Nov 2024, doi: https://doi.org/10.58230/27454312.1444.

S. Rosetya Wardhana, D. Purwitasari, dan S. Rochimah, “Analisis Sentimen pada Review Pengguna Aplikasi Mobile untuk Evaluasi Faktor Usability,” Jsi : Jurnal Sistem dan Informatika, vol. 11, no. 1, hlm. 128–136, 2017.

A. A. Murtopo, M. Aditya, P. S. Ananda, dan G. Gunawan, “Penerapan Computer Vision untuk mendeteksi Kelengkapan Atribut Siswa menggunakan Metode CNN,” Prosisko: Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 11, no. 2, hlm. 247–258, 2024, doi: https://doi.org/10.30656/prosisko.v11i2.8752.

R. L. Nurdiansyah, “Pengaruh Information Gain dan Normalisasi Kata pada Analisis Sentimen berbasis Aspek,” Komputa : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 2, hlm. 80–90, Okt 2023, doi: https://doi.org/10.34010/komputa.v12i2.9449.

D. P. Lestari, Rodiah, S. Madenda, dan L. Octavia, Komputer Vision, Kecerdasan Artifisial, dan Sistem Tertanam, 1 ed. Depok: Penerbit Gunadarma, 2024.

I. D. Saputra, “Aplikasi Web Question Answering menggunakan Langchain OpenAI tentang Peraturan Perundang-undangan Bidang Pendidikan,” Journal of Computer System and Informatics, vol. 6, no. 1, hlm. 293–306, 2024, doi: 10.47065/josyc.v6i1.6182.

P. Pandiangan, “Efektivitas Model Pembelajaran PEPSA pada Pengantar Fisika Kuantum untuk Meningkatkan Keterampilan Berpikir Kritis Mahasiswa,” Jurnal Penelitian Pendidikan Fisika, vol. 8, no. 2, hlm. 127–138, Mei 2023, doi: 10.36709/jipfi.v8i2.21.

R. Lumbantoruan, M. Puspita, S. Nababan, dan L. A. Saragih, “Analisis Perbandingan FastText dan Word2Vec pada Sistem Temu Balik Informasi,” Prosiding Seminar Nasional Sains Data, vol. 4, no. 1, hlm. 1033–1041, Okt 2024, doi: https://doi.org/10.33005/senada.v4i1.416.




DOI: https://doi.org/10.32520/stmsi.v14i1.4964

Article Metrics

Abstract view : 30 times
PDF - 9 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.