The Moving Average Algorithm for Forecasting Palm Oil Fresh Fruit Bunch (FFB) Prices

Zaid Ubay Siregar, Heri Santoso

Abstract


Fresh Fruit Bunches (FFB) of oil palm are the main raw material in the production of Crude Palm Oil (CPO). Efforts to forecast FFB prices are crucial to help mitigate the negative impacts of price fluctuations, which are influenced by various external and internal factors. The problem addressed in this study is the fluctuation in FFB prices, which presents a major challenge for both farmers and stakeholders in the palm oil industry. The method used in this research is a quantitative approach with descriptive methods, applying the Moving Average algorithm. The results of the study show that the Moving Average algorithm is used to forecast FFB prices by calculating the average price over a specific time period. The accuracy of the forecast is evaluated using several metrics: first, the Root Mean Squared Error (RMSE) with a value of 137.19, indicating moderate forecasting error; second, the Mean Absolute Percentage Error (MAPE) with a value of 6.09%, indicating good accuracy; and third, the Mean Absolute Error (MAE) with a value of 117.0, indicating relatively small errors. The accuracy system is derived by comparing the forecasts with actual data and calculating metrics such as RMSE, MAPE, and MAE. These metrics help assess the accuracy of the FFB price forecasting model and allow for adjustments to improve forecasting results.

Full Text:

PDF

References


A. Nurjanah, A. Sukariawan, and D. A. Saragih, “Perbandingan Keragaman Tanaman Kelapa Sawit (Elaeis guineensis Jacq) pada Sistem Peremajaan Konvensional dan Underplanting,” J. Agro Estate, vol. 5, no. 2, pp. 82–88, 2021, doi: 10.47199/jae.v5i2.87.

I. Ismiasih and H. Afroda, “Faktor Penentu Produksi Kelapa Sawit Rakyat di Provinsi Riau,” J. Penelit. Pertan. Terap., vol. 23, no. 2, pp. 211–218, 2023, doi: 10.25181/jppt.v23i2.2726.

M. Siahaan and H. Wijaya, “Strategi Peningkatan Produktivitas Tanaman Kelapa Sawit melalui Pendekatan Manajemen Blok di Perkebunan Kelapa Sawit Skala Luas,” J. Agro Estate, vol. 4, no. 1, pp. 32–39, 2020, doi: 10.47199/jae.v4i1.117.

E. Wulandari, A. F. Kusuma, B. Provinsi Kalimantan Barat, K. Barat, B. Pelatihan Lingkungan Hidup dan Kehutanan, and N. Tenggara Timur, “Kelapa Sawit Indonesia: Dilema dan Solusi yang Tidak Kunjung Usai Indonesia’s Palm Oil: Never-ending Dilemmas and Solutions,” vol. 4, no. Tahun, pp. 57–68, 2023.

B. Irawan and N. I. Soesilo, “Dampak Kebijakan Hilirisasi Industri Kelapa Sawit terhadap Permintaan CPO pada Industri Hilir,” J. Ekon. dan Kebijak. Publik, vol. 12, no. 1, pp. 29–43, 2021, doi: 10.22212/jekp.v12i1.2023.

M. E. Moneka, Z. Alamsyah, and A. Saputra, “Analisis Faktor-faktor yang mempengaruhi Harga TBS Petani Kelapa Sawit Swadaya di Kabupaten Tebo,” vol. 15, no. 2, pp. 1–23, 2019.

R. N. Rahayu, B. Riset, D. Inovasi, N. Kawasan, and P. Serpong, “Kenaikan Harga Minyak Goreng Kelapa Sawit di Indonesia Sebuah Analisis Berita Kompas Online,” Badan Ris. dan Inov. Nas. Kaw. Puspiptek Serpong, vol. 3, no. 8, pp. 26–37, 2022.

B. G. Aji, D. C. A. Sondawa, F. A. Anindika, and D. Januarita, “Analisis Peramalan Obat menggunakan Metode Simple Moving Average, Weighted Moving Average, dan Exponential Smoothing,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 959, 2022, doi: 10.30865/jurikom.v9i4.4454.

R. Fijra and M. Navero, “Peramalan Produksi CPO (Crude Palm Oil) pada PT. XYZ,” vol. 2, no. 1, pp. 81–91, 2023.

D. A. P. Pradana, F. Mahananto, and A. Djunaidy, “Sistem Peramalan menggunakan Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) untuk Harga Minyak Sawit Indonesia,” J. Tek. ITS, vol. 11, no. 2, 2022, doi: 10.12962/j23373539.v11i2.86373.

D. R. P. Lubis and I. Zufria, “Perbandingan Metode ARIMA Box-Jenkins dengan Moving Avarage untuk Peramalan Harga Emas,” J. Media Inform. Budidarma, vol. 7, no. 4, p. 1930, 2023, doi: 10.30865/mib.v7i4.6897.

N. Litha and T. Hasanuddin, “Analisis Performa Metode Moving Average Model untuk Prediksi Jumlah Penderita Covid-19,” Indones. J. Data SCI., vol. 1, no. 3, pp. 87–95, 2020.

L. Alpianto, A. Hermawan, and Junaedi, “Moving Average untuk Prediksi Harga Saham dengan Linear Regression,” J. Buana Inform., vol. 14, no. 02, pp. 117–126, 2023, doi: 10.24002/jbi.v14i02.7446.

S. Sylvia, “Aplikasi Model Peramalan Moving Average dan Exponential Smoothing untuk Penjualan Produk Minuman di CV. Gatsu Jaya Perkasa Abadi,” Ind. Inov. J. Tek. Ind., vol. 13, no. 2, pp. 61–67, 2023, doi: 10.36040/industri.v13i2.4807.

E. Maulid, “Penerapan Metode Simple Moving Average terhadap Prediksi Transaksi Penjualan,” J. Ilm. Indones., vol. 7, no. 7, p. 10, 2022, doi: 10.36418/syntax-literate.v7i10.13209.

B. Arifin, G. L. P. Tanaya, and A. Usman, “Peramalan Harga Kelapa Sawit Dunia pada Tahun 2020-2024,” Pros. Saintek LPPM Univ. Mataram, vol. 3, pp. 349–368, 2021.

S. Agustian and H. Wibowo, “Perbandingan Metode Moving Average untuk Prediksi Hasil Produksi Kelapa Sawit,” Perbandingan Metod. Mov. Aver. untuk Prediksi Has. Produksi Kelapa Sawit, no. 1, pp. 156–162, 2019.

F. Irawan, S. Sumijan, and Y. Yuhandri, “Prediksi Tingkat Produksi Buah Kelapa Sawit dengan Metode Single Moving Average,” J. Inf. dan Teknol., vol. 3, pp. 251–256, 2021, doi: 10.37034/jidt.v3i4.162.

E. Hamdari, S. Martha, and N. N. Debataraja, “Peramalan Harga Tandan Buah Segar Kelapa Sawit menggunakan Fuzzy Time Series Ruey Chyn Tsaur,” vol. 13, no. 1, pp. 43–52, 2024.

D. Prasetyo and Widiyanto, “Pengaruh Inflasi, Nilai Tukar Rupiah, Suku Bunga Bank Indonesia, dan Harga Emas terhadap Nilai Aktiva Bersih Reksadana Syariah,” Konf. Ilm. Mhs. Unissula 2, pp. 133–153, 2019.




DOI: https://doi.org/10.32520/stmsi.v14i1.4977

Article Metrics

Abstract view : 72 times
PDF - 15 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.