Optimizing Sentiment Analysis of Digital Wayang Viewer Comments using SMOTE and the Naïve Bayes Algorithm

mawar hardiyanti, Maria Karmelia Fajarlestari

Abstract


Wayang performances are an integral part of Indonesia’s rich cultural heritage. This traditional art form has been deeply rooted in Indonesian society for centuries, evolving through live performances and, more recently, through rapid digital adaptations—including presentations on online platforms such as YouTube. In the digital age, YouTube has become a leading platform for video sharing, allowing audiences to enjoy wayang performances without being physically present. However, data from the Central Bureau of Statistics on Socio-Cultural Affairs indicates a decline in interest among younger generations in traditional arts such as wayang. This highlights the need for innovative and relevant approaches to reintroduce this cultural heritage to them. Sentiment analysis based on viewer comments offers an effective way to identify audience opinions—whether positive, negative, or neutral. Comment data were collected using web scraping techniques with Selenium WebDriver, enabling efficient data extraction. The collected data then underwent preprocessing, including case folding, tokenization, and stopword removal, to prepare it for classification. The Naïve Bayes algorithm was employed to categorize comments into positive, negative, or neutral sentiments. Preliminary results revealed that 51.6% of comments were positive, 42.3% neutral, and 6.0% negative. Model evaluation using K-fold cross-validation yielded an accuracy of 0.98 ± 0.01, a precision of 0.99 ± 0.01, and a recall of 0.72 ± 0.11 without applying SMOTE. After applying SMOTE, recall improved to 0.80 ± 0.05. This study contributes to the development of more accurate sentiment analysis models in the context of social media and underscores the importance of techniques like SMOTE in addressing class imbalance issues.

Keywords


Sentiment analysis, Naïve Bayes, Web Scraping, SMOTE, YouTube

Full Text:

PDF

References


T. Temu Tradisi and R. Novia Sapphira, "The Meeting Point of Tradition and Modernization: Cultural Adaptation in Preserving Wayang Kulit in the Digital Era," Anthropos: Jurnal Antropologi Sosial dan Budaya (Journal of Social and Cultural Anthropology), vol. 8, no. 2, 2023. [Online]. Available: http://jurnal.unimed.ac.id/2012/index.php/anthropos.

D. Waluyo and R. Rosmawati, "Dinamika Seni Tradisional pada Era Digital Dynamics of Traditional Art in the Digital Age," Majalah Semi Ilmiah Populer Komunikasi Massa, vol. 2, no. 2, pp. 161–172, 2021.

M. Pasaribu, Y. R. Dewi, and W. Oktaviani, "Penggunaan Konten Youtube sebagai Media Komunikasi Pemasaran pada Brand Jakarta Uncensored," Jurnal Cyber PR, vol. 4, no. 1, pp. 29–39, Jun. 2024. ISSN (online) 2798-0561. [Online]. Available: https://journal.moestopo.ac.id/index.php/cyberpr.

J. N. S. Gono and W. N. Rakhmad, “Pandangan Penonton tentang Wayang Kulit di Kanal Youtube,” Biokultur, vol. 10, no. 2, p. 107, Dec. 2021, doi: 10.20473/bk.v10i2.31265.

Badan Pusat Statistik, Statistik Sosial Budaya 2021, Badan Pusat Statistik, Jakarta, Indonesia, 2021. [Online]. Available: https://www.bps.go.id.

M. Z. Alfaqi, "Eksistensi dan Problematika Pelestarian Wayang Kulit pada Generasi Muda Kec. Ringinrejo Kab. Kediri," Jurnal Praksis dan Dedikasi, vol. 5, no. 2, pp. 119–128, 2022. doi: 10.17977/um032v5i2p119-128.

"Lunturnya Minat Generasi Muda terhadap Seni dan Budaya Tradisional Indonesia," Indonesiana. Accessed: Mar. 30, 2024. [Online]. Available: https://www.indonesiana.id/read/133646/lunturnya-minat-generasi-muda-terhadap-seni-dan-budaya-tradisional-indonesia.

W. Warsito and I. Fibiona, Revitalisasi Wayang Kedu, Kabupaten Temanggung, Jawa Tengah, 1st ed. Balai Pelestarian Kebudayaan Wilayah X, 2023.

F. R. Jannah, A. Megiananta Aprilistya, and S. Khadijah, “Analisis Framing Pemberitaan Perseteruan Farida Nurhan dan Food Vlogger Codeblu di Kompas.com dan Viva.Co.Id,” Prosiding Seminar Nasional, pp. 1040–1048, 2023.

C. Jonathan, T. H. Rochadiani, and T. Sofian, "Analisis Sentimen Komentar Video Youtube Flat Earth Theory dengan menggunakan Metode Unsupervised dan Supervised Learning," Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 2, pp. 378–387, Aug. 2023. doi: 10.51454/decode.v3i2.210.

H. Irsyad and M. R. Pribady, "Klasifikasi Opini terhadap Pertanian Sawit (Palm Oil) Indonesia menggunakan Naïve Bayes," vol. 6, no. 2, 2020. [Online]. Available: http://jurnal.mdp.ac.id.

N. Indurkhya and F. J. Damerau, Handbook of Natural Language Processing, 2nd ed., Chapman & Hall/CRC, Machine Learning & Pattern Recognition Series.

H. Rachmi and A. Surniandari, "Classification of Text Mining Review Oil Diffuser Products using Naive Bayes Classification," Jurnal Mantik, vol. 4, no. 1, pp. 187–192, 2020. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/728. [Accessed: Nov. 15, 2024].

"Naive-Bayes Classification Algorithm," [Online]. Available: http://www.convo.co.uk/x02/. [Accessed: Nov. 15, 2024].

I. Rish, "An Empirical Study of the Naïve Bayes Classifier," Université de Montréal, Jan. 2001. [Online]. Available: https://www.researchgate.net/publication/228845263. [Accessed: Nov. 15, 2024].

A A. Karim, S. F. C., and M. Mustafa, "Analisis Sentimen pada Komentar Sosial Media Instagram Layanan Kesehatan BPJS menggunakan Naïve Bayes Classifier," Prosiding Seminar Nasional Konferensi Ilmiah Mahasiswa UNISSULA 7 (KIMU 7), Semarang, Dec. 2021.

K. V. S. Toy, Y. A. Sari, and I. Cholissodin, "Analisis Sentimen Twitter menggunakan Metode Naive Bayes dengan Relevance Frequency Feature Selection (Studi Kasus: Opini Masyarakat mengenai Kebijakan New Normal)," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 11, pp. 5068–5074, Nov. 2021. e-ISSN: 2548-964X. [Online]. Available: http://j-ptiik.ub.ac.id.

M. H. Asnawi, I. Firmansyah, R. Novian, and R. S. Pontoh, "Perbandingan Algoritma Naïve Bayes, K-NN, dan SVM dalam Pengklasifikasian Sentimen Media Sosial," SEMINAR NASIONAL STATISTIKA X (2021), ISSN Cetak: 2087-2590, ISSN Online: 2599-2546. [Online]. Available: http://prosiding.statistics.unpad.ac.id.

M. R. W. Julianto, D. Wasistha, and A. D. Hartanto, "Implementasi Algoritma Support Vector Machine untuk Sentimen Analisis Cyberbullying pada Kolom Komentar Instagram Artis," INTECHNO Journal, vol. 3, no. 2, Dec. 2021. e-ISSN: 2655-1438, p-ISSN: 2655-1632.

A. Ardiyansah and Parjito, "Perbandingan Metode Naïve Bayes dan Support Vector Machine dalam Analisis Sentimen terhadap Tokoh Publik," KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 6, pp. 2813–2821, 2024, doi: 10.30865/klik.v4i6.1928.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 765–772. doi: 10.1016/j.procs.2019.11.181.

L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat terhadap Pembangunan di Kota Pontianak,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 2, p. 183, Apr. 2020, doi: 10.26418/justin.v8i2.36776.

M. R. Amly, Yusra, and M. Fikry, "Penerapan Metode Naïve Bayes Classifier pada Klasifikasi Sentimen terhadap Anies Baswedan sebagai Bakal Calon Presiden 2024," Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 4, pp. 621–631, Jun. 2023. e-ISSN: 2685-998X, DOI: 10.30865/json.v4i4.6214.




DOI: https://doi.org/10.32520/stmsi.v14i3.5002

Article Metrics

Abstract view : 148 times
PDF - 32 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.