Implementation of the Long Short-Term Memory Algorithm in a Chatbot for Dengue Fever Information and Education Services
Abstract
Keywords
Full Text:
PDFReferences
E. Asih, V. T. Putri, N. Lusida, A. Mallongi, N. Latifah, F. Fajrini, and H. SG., “Analisis Variasi Iklim dengan Kejadian Demam Berdarah Dengue (DBD) di Kota Tangerang Selatan,” J. Kedokt. dan Kesehat., vol. 19, no. 1, p. 33, 2023, doi: 10.24853/jkk.19.1.33-41.
D. Nurmumpuni, B. Kurniawan, and Suharmanto, “Efektivitas Program Pemberantasan Penyakit Demam Berdarah Dengue,” J. Penelit. Perawat Prof., vol. 6, no. 3, pp. 1377–1386, 2024.
C. Rahmawati, B. Leny Nopitasari, A. Kusuma Wardani, B. Nurbaety, B. Lenysia Puspita Anjani, M. Permata Hati, N. Furqani, A. Rahman Wahid, I. Hendriyani, A. Pradiningsih, Y. Fitriana, D. Haryadi Ittiqo, “Edukasi Mencegah Penyakit Demam Berdarah Dengue (DBD) pada Masyarakat Lingkungan Dasan Sari Ampenan,” J. Pengabdi. Masy. Berkemajuan, vol. 6, no. 4, pp. 3038–3042, 2022.
L. Indahsari, K. Kusnadi, and T. E. Putri, “Rancang Bangun LINE Chatbot Informasi dan Edukasi Kesehatan Mental menggunakan Algoritma Jaro Winkler,” J. Eksplora Inform., vol. 10, no. 2, pp. 68–79, 2021, doi: 10.30864/eksplora.v10i2.428.
M. Mustaqim, A. Gunawan, Y. B. Pratama, and I. Zaliman, “Pengembangan Chatbot Layanan Publik menggunakan Machine Learning dan Natural Languange Processing,” J. Inf. Technol. Soc., vol. 1, no. 1, pp. 1–4, 2023.
L. Cui, “SuperAgent : A Customer Service Chatbot for E-commerce Websites,” pp. 97–102, 2017.
J. Lee and W. Maeng, “Designing a Chatbot for Survivors of Sexual Violence : Exploratory Study for Hybrid Approach Combining Rule-based Chatbot and ML-based Chatbot,” in Asian CHI Symposium, 2021, pp. 160–166, doi: 10.1145/3429360.3468203.
M. R. Suherlan, A. Asriyanik, and A. Pambudi, “UMMIBOT sebagai Media Layanan Informasi Penerimaan Mahasiswa Baru Universitas Muhammadiyah Sukabumi,” J. Inform. Terpadu, vol. 9, no. 2, pp. 82–91, 2023, doi: 10.54914/jit.v9i2.893.
Sutarni, E. Prasetyo, and L. E. Sudiati, “Evaluasi Kinerja Chatbot dengan Integrasi Algoritma RNN dan LSTM dalam Optimalisasi Respon Percakapan pada Sistem PMB,” SOSCIED, vol. 7, no. 2, 2024.
G. A. Pratama, N. C. Wiboeo, A. Pratama, “Implementasi Chatbot Konsultasi Karier berbasis Deep Feed-Forward Neural Network menggunakan,” J. Tek. Inform. dan Sist. Inf., vol. 11, no. 3, pp. 248–260, 2024.
S. P. Afrisia, F. M. Hana, and W. C. Wahyudin, “Implementasi Metode Long Short Term Memory ( LSTM ) pada Chatbot Kesehatan Mental Mahasiswa,” Sainteks, vol. 21, no. 2, pp. 107–116, 2024, doi: 10.30595/sainteks.v21i2.23869.
P. B. Wintoro, H. Hermawan, M. A. Muda, and Y. Mulyani, “Implementasi Long Short-Term Memory pada Chatbot Informasi Akademik Teknik Informatika Unila,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 12, no. 1, p. 68, 2022, doi: 10.36448/expert.v12i1.2593.
Y. S. H. Langgeng, E. I. Setiawan, S. Imron, and J. Santoso, “Long Short-Term Memory-based Chatbot for Vocational Registration Information Services,” J. Appl. Data Sci., vol. 4, no. 4, pp. 414–430, 2023, doi: 10.47738/jads.v4i4.128.
I. D. Raharjo and E. R. Subhiyakto, “Implementing Long Short Term Memory (LSTM) in Chatbots for Multi Usaha Raya,” Adv. Sustain. SCI. Eng. Technol., vol. 6, no. 4, pp. 1–8, 2024, doi: 10.26877/asset.v6i4.934.
A. Adil, Metode Penelitian Kuantitatif dan Kualitatif: Teori dan Praktik, no. January. 2023.
F. Y. Fiddin, A. Komarudin, and M. Melina, “Chatbot Informasi Penerimaan Mahasiswa Baru menggunakan Metode FastText dan LSTM,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 33–39, 2024, doi: 10.52158/jacost.v5i1.648.
DOI: https://doi.org/10.32520/stmsi.v14i2.5060
Article Metrics
Abstract view : 146 timesPDF - 15 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.