Clove Quality Classification using the ResNet50V2 Architecture

Muhamad Nurfaizi Linggama, Dhani Ariatmanto

Abstract


The development of artificial intelligence (AI) and computer vision has opened new opportunities in the agricultural industry, including in clove quality classification. The quality of cloves affects their market value and export standards; however, classification still faces challenges such as similarities in shape, size, and color, as well as variability in lighting and background images that can reduce the accuracy of classification models. To address these challenges, this study develops a clove quality classification system using a Convolutional Neural Network (CNN) with the ResNet50V2 architecture, which has proven to be superior in image processing. The dataset used consists of 1,250 images of cloves that were processed through stages of background removal, image cropping, and resizing to 224x224 pixels to meet the model's requirements. The data is divided into 80% for training and 20% for testing. The model is trained using deep learning techniques, with parameters optimized to enhance classification performance. The results show that the ResNet50V2 model achieves an accuracy of 98.80%, with very high precision, recall, and F1-score. The accuracy and loss graphs indicate that the model operates stably without experiencing overfitting, while the confusion matrix shows a very low prediction error rate. These results demonstrate that ResNet50V2 is effective in classifying clove quality.

Keywords


Klasifikasi Kualitas Cengkeh, Kecerdasan Buatan, Computer Vision, ResNet50V2

Full Text:

PDF

References


F. Tempola, R. Wardoyo, A. Musdholifah, Rosihan, and A. K. Nugroho, “Implementation of Deep Learning with Resnet50 Modification for Clove Classification,” Proceeding - IEEE 9th Inf. Technol. Int. Semin. ITIS 2023, pp. 1–4, 2023, doi: 10.1109/ITIS59651.2023.10419960.

T. Anjali Dompeipen, S. R. U. . Sompie, and M. E. . Najoan, “Computer Vision Implementation for Detection and Counting the Number of Humans,” J. Tek. Inform. vol. 16 no. 1, vol. 16, no. 1, pp. 65–76, 2021.

M. Fauzi, A. Ilhami, and S. Wibisono, “Klasifikasi Rimpang menggunakan Metode Jaringan Saraf Konvolusi dengan Arsitektur Alexnet Rhizome Classification using Convolutional Neural Network Method with Alexnet Architecture,” J. Inf. Technol. Comput. Sci., vol. 6, no. 2, 2023.

M. A. Tamayo-Monsalve et al., “Coffee Maturity Classification using Convolutional Neural Networks and Transfer Learning,” IEEE Access, vol. 10, no. January, pp. 42971–42982, 2022, doi: 10.1109/ACCESS.2022.3166515.

M. A. Leonardi and A. Y. Chandra, “Analisis Perbandingan CNN dan Vision Transformer untuk Klasifikasi Biji Kopi Hasil Sangrai,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1398, 2024, doi: 10.30865/mib.v8i3.7732.

A. Shanthini, G. Manogaran, and G. Vadivu, Deep Convolutional Neural Network for The Prognosis of Diabetic Retinopathy. 2023. [Online]. Available: https://doi.org/10.1007/978-981-19-3877-1%0Ahttps://link.springer.com/10.1007/978-981-19-3877-1

D. Hastari, S. Winanda, A. R. Pratama, N. Nurhaliza, and E. S. Ginting, “Application of Convolutional Neural Network ResNet-50 V2 on Image Classification of Rice Plant Disease,” Public Res. J. Eng. Data Technol. Comput. Sci., vol. 1, no. 2, pp. 71–77, 2024, doi: 10.57152/predatecs.v1i2.865.

H. I. Fitriasari and M. Rizkinia, “Improvement of Xception-ResNet50V2 Concatenation for COVID-19 Detection on Chest X-Ray Images,” 3rd 2021 East Indones. Conf. Comput. Inf. Technol. EIConCIT 2021, pp. 343–347, 2021, doi: 10.1109/EIConCIT50028.2021.9431916.

M. Harahap, Em Manuel Laia, Lilis Suryani Sitanggang, Melda Sinaga, Daniel Franci Sihombing, and Amir Mahmud Husein, “Deteksi Penyakit Covid-19 pada Citra X-Ray dengan Pendekatan Convolutional Neural Network (CNN),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 70–77, 2022, doi: 10.29207/resti.v6i1.3373.

A. K. Das, S. Ghosh, S. Thunder, R. Dutta, S. Agarwal, and A. Chakrabarti, “Automatic COVID-19 Detection from X-ray Images using Ensemble Learning with Convolutional Neural Network,” Pattern Anal. Appl., vol. 24, no. 3, pp. 1111–1124, 2021, doi: 10.1007/s10044-021-00970-4.

I. Y. Prayogi, Sandra, and Y. Hendrawan, “Image Classification of Different Clove (Syzygium Aromaticum) Quality using Deep Learning Method with Convolutional Neural Network Algorithm,” IOP Conf. Ser. Earth Environ. Sci., vol. 905, no. 1, 2021, doi: 10.1088/1755-1315/905/1/012018.

J. A. T. Nasuli, J. P. Lumbis, and E. R. Arboleda, “Arabica Coffee Bean Quality Identification using Support Vector Machine-based Digital Image Processing,” no. June, 2023, doi: 10.13140/RG.2.2.19015.47522.

Y. N. Yaspin, D. W. Widodo, and J. Sulaksono, “Klasifikasi Kualitas Bunga Cengkeh untuk meningkatkan Mutu dengan Pemanfaatan Ciri Gray Level Co-Occurence Matrix (GLCM),” Semin. Nas. Inov. Teknol., pp. 149–154, 2020, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/78

F. A. Chalik and W. F. Al Maki, “Classification of Dried Clove Flower Quality using Convolutional Neural Network,” 2021 Int. Conf. Data Sci. Artif. Intell. Bus. Anal. DATABIA 2021 - Proc., pp. 40–45, 2021, doi: 10.1109/DATABIA53375.2021.9650199.

S. Samidin and A. Fadjeri, “Klasifikasi Gambar Batu-Kertas-Gunting menggunakan Convolutional Neural Network dengan Fungsi Callback untuk mencegah Overfitting,” J. Penelit. Inov., vol. 4, no. 2, pp. 785–794, 2024, doi: 10.54082/jupin.413.

B. Rostami, D. M. Anisuzzaman, C. Wang, S. Gopalakrishnan, J. Niezgoda, and Z. Yu, “Multiclass Wound Image Classification using an Ensemble Deep CNN-based Classifier,” Comput. Biol. Med., vol. 134, no. May, p. 104536, 2021, doi: 10.1016/j.compbiomed.2021.104536.




DOI: https://doi.org/10.32520/stmsi.v14i2.5075

Article Metrics

Abstract view : 114 times
PDF - 15 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.