Literature Review: A Comparative Study of Waste Classification using Deep Learning Algorithms

Ariza Ikhlas, Billy Hendrik

Abstract


Waste type classification remains a daily challenge in modern waste management. Proper waste classification contributes significantly to environmental protection and enhances the efficiency of the recycling process. Unfortunately, manual waste classification is rarely performed by individuals, resulting in mixed waste that is difficult to separate into recyclable and non-recyclable categories. This leads to increased waste accumulation, which becomes harder to process over time. Therefore, automating this procedure using computer vision is of critical importance. This study adopts a Systematic Literature Review (SLR) methodology to analyze existing research conducted by previous scholars. The main objectives are to identify the most appropriate algorithms for waste type classification, determine the most suitable model architectures, and examine the correlation between dataset size, number of classes, and classification accuracy. The results of the literature review show that the Convolutional Neural Network (CNN) algorithm is widely used and considered highly effective for computer vision tasks. Among the best-performing models are: A standard CNN architecture achieving 100% accuracy with 150 data points and 3 classes, CNN with ResNet50 model achieving 99.41% accuracy on 2,527 data points and 6 classes, A combination of ResNet, k-Nearest Neighbors (kNN), and Neighborhood Component Analysis (NCA) achieving 99.35% accuracy on 13,089 data points and 1,672 classes, CNN with CapSA ECOC + ANN model reaching 99.01% accuracy on 1,515 data points and 12 classes. These findings indicate that numerous prior studies have successfully developed high-accuracy models for waste classification, which can serve as a solid foundation for building computer vision systems to automate the waste sorting process.

Keywords


classification; computer vision; SLR; algorithm; CNN

Full Text:

PDF

References


V. Damayanti, “Laporan Kinerja Direktorat Pengurangan Sampah,” Jakarta, Jan. 2024.

Z. Nugraha Indra, Arnita, K. Saputra, A. Setiawan, R. Maharani, and F. Zaharani, “Implementasi Algoritma CNN dalam Pengembangan Website untuk Klasifikasi Sampah Organik dan Non-Organik,” Jurnal Manamen Informatika & Sistem Informasi, vol. 8, no. 1, pp. 90–101, Jan. 2025, doi: 10.36595/misi.v5i2.

C. Eva Sari Nainggolan, M. Nasir, and D. Udariansyah, “Perbandingan Klasifikasi Jenis Sampah menggunakan Convolutional Neural Network dengan Arsitektur ResNet18 dan ResNet50 the Classification Comparison of Waste Type using Convolutional Neural Network by Resnet18 and Resnet50 Architecture,” vol. 16, no. 1, p. 76, 2024, doi: 10.22303/csrid.1.1.2022.01-10.

Q. A’yuni 1 and B. Hendrik, “Literature Review : Analisis Kompratif Algoritma CNN, KNN, dan SVM untuk Klasifikasi Penyakit Kelapa Sawit,” Journal of Education Research, vol. 5, no. 4, pp. 6589–6596, Dec. 2024, doi: https://doi.org/10.37985/jer.v5i4.1983.

F. Dwiatmoko, D. Utami, N. A. Sivi, U. Nahdlatul, and U. Lampung, “Klasifikasi Citra Sampah Organik dan Non Organik menggunakan Algoritma CNN (Convolutional Neural Network),” 2024.

G. S. Susanth, L. M. J. Livingston, and L. G. X. A. Livingston, “Garbage Waste Segregation using Deep Learning Techniques,” IOP Conf Ser Mater Sci Eng, vol. 1012, no. 1, p. 012040, Jan. 2021, doi: 10.1088/1757-899x/1012/1/012040.

A. Marzuki, A. Zaky, A. C. Adha, and T. M. Yoshandi, “Analisis Model Klasifikasi Sampah Botol berbasis Image Processing dan Machine Learning dalam Rancang Bangun Aplikasi Penukaran Sampah Botol Otomatis,” 2024.

G. A. Bahagia and M. Akbar, “Klasifikasi Sampah Organik dan Anorganik menggunakan Metode Convolutional Neural Network (CNN),” Yogyakarta, Oct. 2024.

A. Aprilla, W. Prihartono, and C. L. Rohmat, “Optimasi Model Klasifikasi Citra Sampah Daur Ulang dengan Algoritma Yolo 11,” Jurnal Khatulistiwa, vol. 12, pp. 92–97, Dec. 2024.

P. Sampah, D. Ulang menggunakan, and S. Helmiyah, “Pengenalan Sampah Daur Ulang menggunakan Machine Learning untuk mendukung Pengelolaan Limbah Berkelanjutan,” Jurnal Pendidikan, vol. 8, no. No.1, pp. 71–78, Feb. 2025.

W. Liu, J. Jiang, N. Li, Y. Wang, K. Liu, and C. Zhao, “A Garbage Intelligent Classification and Recycling System based on Deep Learning,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 744–750. doi: 10.1016/j.procs.2024.09.089.

R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception pada Model Machine Learning Klasifikasi Sampah Anorganik,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 2, Apr. 2023, doi: 10.23960/jitet.v11i2.3034.

S. J. Buchade and S. Bhoite, “Comparative Study of ML Algorithms for Garbage Classification,” Jan. 30, 2024. doi: 10.21203/rs.3.rs-3903806/v1.

Y. Huang, “Research on Garbage Sorting Robotic Arm based on Image Vision,” in Journal of Physics: Conference Series, Institute of Physics, 2024. doi: 10.1088/1742-6596/2741/1/012020.

J. Wang, “Application Research of Image Classification Algorithm based on Deep Learning in Household Garbage Sorting,” Heliyon, vol. 10, no. 9, May 2024, doi: 10.1016/j.heliyon.2024.e29966.

K. Demir and O. Yaman, “Projector Deep Feature Extraction-based Garbage Image Classification Model using Underwater Images,” Multimed Tools Appl, Oct. 2024, doi: 10.1007/s11042-024-18731-w.

B. Fu, S. Li, J. Wei, Q. Li, Q. Wang, and J. Tu, “A Novel Intelligent Garbage Classification System based on Deep Learning and an Embedded Linux System,” IEEE Access, vol. 9, pp. 131134–131146, 2021, doi: 10.1109/ACCESS.2021.3114496.




DOI: https://doi.org/10.32520/stmsi.v14i3.5163

Article Metrics

Abstract view : 130 times
PDF - 27 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.