Sentiment Analysis of Public Satisfaction with the 'INFO BMKG' Application using Naive Bayes, SVM, and KNN

Natasya Aditiya, Pratomo Setiaji, Supriyono Supriyono

Abstract


This study aims to analyze public sentiment regarding the Info BMKG application on the Google Play Store. With the increasing number of users of information-based applications, understanding how users perceive and evaluate such applications has become essential. This research employs three classification algorithms—Naive Bayes, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)—to categorize user reviews into positive, neutral, or negative sentiments. The dataset was obtained through web scraping from the Google Play Store, consisting of usernames, dates, star ratings, and user comments. Data preprocessing was conducted to clean and prepare the data for analysis. Additionally, a web-based data mining application was developed to facilitate data processing and result visualization. The study aims to present the distribution of sentiment (positive, neutral, and negative) toward the Info BMKG app and help developers understand the factors that influence user satisfaction. Moreover, it contributes to the field of sentiment analysis and information technology, particularly in disaster-related information applications. Based on model evaluation, the Naive Bayes algorithm demonstrated the best performance with an accuracy of 79.84%, precision of 60%, recall of 58%, and the fastest runtime at 0.19 seconds. KNN achieved an accuracy of 74.35% with the lowest recall at 44%, while SVM had an accuracy of 72.26% but required the longest runtime at 611 seconds. AUC validation further confirmed the superiority of Naive Bayes, with the highest scores across all sentiment categories. Thus, Naive Bayes is shown to be the most optimal for sentiment analysis in this study, whereas KNN and SVM showed certain limitations, particularly in efficiency and classification accuracy.

Keywords


sentimen;info bmkg;naive bayes;svm;knn

Full Text:

PDF

References


D. Darwis, N. Siskawati, And Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” Jurnal Tekno Kompak, Vol. 15, No. 1, Pp. 131–145, 2021.

H. Firda, P. Putra, N. R. Oktadini, P. E. Sevtiyuni, And A. Meiriza, “Comparison of Rating-based and Inset Lexicon-based Labeling in Sentiment Analysis using SVM (Case Study: Gobiz Application Reviews on Google Play Store),” Sistemasi: Jurnal Sistem Informasi, Vol. 14, No. 2, Pp. 516–528, 2025.

S. R. Putri, M. Arifin, And S. Supriyono, “Public Sentiment Analysis of Nadiem Makarim as Minister of Education, Culture, Research, and Technology using Support Vector Machine (SVM),” Sistemasi: Jurnal Sistem Informasi, Vol. 14, No. 2, Pp. 826–834, 2025.

J. Sanjaya, B. Priyatna, S. S. Hilabi, And Others, “Analisis Sentimen terhadap Opini Proyek Kereta Cepat menggunakan Metode Naive Bayes Classifier,” Jurnal Fasilkom, Vol. 14, No. 1, Pp. 263–270, 2024.

Rojakul, Sumardianto, And A. Wibowo, “Analisis Sentimen Popularitas Capres dan Pilpres pada Media Sosial Twitter: Perbandingan Algoritma SVM, KNN, dan Naive Bayes.,” Techno. Com, Vol. 23, No. 2, 2024.

C. Huda And M. B. Yel, “Analisa Sentimen tentang Ibu Kota Nusantara (IKN) dengan menggunakan Algoritma K-Nearest Neighbors (KNN) dan Naive Bayes,” Jurnal Ilmu Komputer dan Sistem Informasi (Jikomsi), Vol. 7, No. 1, Pp. 126–130, 2024.

M. F. El Firdaus, Nurfaizah, And Sarmini, “Analisis Sentimen Tokopedia pada Ulasan di Google Playstore menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neighbor,” Universitas Amikom Purwokerto, 2022.

R. Firdaus, R. Al Hariri, And H. F. Amran, “Sentimen Analisis Masyarakat tentang Penetapan Hari Raya Idul Adha Tahun 2023 pada Video Youtube menggunakan Algoritma Random Forest dan Support Vector Machine,” Jurnal Fasilkom, Vol. 14, No. 1, Pp. 278–285, 2024.

V. Artanti, M. Faisal, And F. Kurniawan, “Klasifikasi Cardiovascular Diseases menggunakan Algoritma K-Nearest Neighbors (KNN).,” Techno. Com, Vol. 23, No. 2, 2024.

M. Y. Hidayatulloh, A. Sunanto, A. Armansyah, M. F. A. Gevin, And D. D. Saputra, “Optimasi Sentimen Analisis Informatif dan tidak Informatif dari Tweet di BMKG menggunakan Algoritma Naive Bayes dan Metode Teknik Pengambilan Sampel Minoritas Sintetis,” J-Sakti (Jurnal Sains Komputer Dan Informatika), Vol. 7, No. 1, Pp. 1–12, 2023.

K. D. Pratama, D. W. Brata, And W. Purnomo, “Analisis Sentimen Ulasan Pengguna Aplikasi Info BMKG pada Google Play Store di Indonesia,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, Vol. 7, No. 4, Pp. 1826–1834, 2023.

I. M. K. Karo, J. A. K. Karo, Y. Yunianto, H. Hariyanto, M. Falah, And M. Ginting, “Analisis Sentimen Ulasan Aplikasi Info BMKG di Google Play menggunakan Tf-Idf dan Support Vector Machine,” J. Inf. Syst. Res, Vol. 4, No. 4, Pp. 1423–1430, 2023.

R. Aziz, T. M. Fahrudin, And W. S. J. Saputra, “Analisis Sentimen Kepuasan Pengguna Oyo di Playstore dengan Multinoial Naive Bayes dan Chi-Square,” Jurnal Fasilkom, Vol. 14, No. 1, Pp. 166–175, 2024.

P. Setiaji, K. Adi, And B. Surarso, “Development of Classification Method for Determining Chicken Egg Quality using GLCM-CNN Method,” Ingenierie Des Systemes D’information, Vol. 29, No. 2, Pp. 397–407, Apr. 2024, Doi: 10.18280/Isi.290201.

S. Suryanto And W. Andriyani, “Sentiment Analysis of X Platform on Viral’fufufafa’account Issue in Indonesia using SVM,” Ijccs (Indonesian Journal Of Computing And Cybernetics Systems), Vol. 19, No. 1, 2024.

N. Sari, M. Jazman, T. K. Ahsyar, S. Syaifullah, And A. Marsal, “Implementation of Naive Bayes and Support Vector Machine Classification Algorithms for Sentiment Analysis of Bilingual Cyberbullying on X Application,” Sistemasi: Jurnal Sistem Informasi, Vol. 14, No. 1, Pp. 211–224, 2025.

G. P. Insany, I. L. Kharisma, And R. Rosmawati, “Penerapan Algoritma Random Forest untuk menganalisis Ulasan Aplikasi Spotify pada Google Play,” Edumatic: Jurnal Pendidikan Informatika, Vol. 8, No. 2, Pp. 369–378, 2024.

K. F. Ardika And J. D. Santoso, “Sentiment Analysis on Android Applications using Mediapipe for Text Classification,” Sistemasi: Jurnal Sistem Informasi, Vol. 14, No. 1, Pp. 444–454, 2025.

G. Tamami, W. A. Triyanto, And S. Muzid, “Sentiment Analysis Mobile JKN Reviews using Smote based LSTM,” Ijccs (Indonesian Journal Of Computing And Cybernetics Systems), Vol. 19, No. 1, Pp. 13–24, 2025.

P. G. Aryanti And I. Santoso, “Analisis Sentimen pada Twitter terhadap Mobil Listrik menggunakan Algoritma Naive Bayes,” Ikra-Ith Informatika: Jurnal Komputer Dan Informatika, Vol. 7, No. 2, Pp. 133–137, 2023.

F. F. Mulyandani, P. Setiaji, And Supriyono, “Optimasi Efisiensi Operasional UD Wijoo dengan Sistem Informasi Penjualan Mebel menggunakan Metode Multiple Step,” Jekin-Jurnal Teknik Informatika, Vol. 5, No. 1, Pp. 445–458, 2025.




DOI: https://doi.org/10.32520/stmsi.v14i3.5223

Article Metrics

Abstract view : 130 times
PDF - 96 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.