Optimization of CNN Activation Functions using Xception for South Sulawesi Batik Classification

Aswan Aswan, Eva Yulia Puspaningrum, Billy Eden William Asrul

Abstract


Batik motifs from South Sulawesi such as the Pinisi boat, Lontara script, Tongkonan house and Toraja combinations embody rich cultural narratives but are difficult to identify automatically. Automatic classification supports cultural preservation and education and empowers tourism and digital heritage applications. This study improves the performance of convolutional neural networks for South Sulawesi batik classification by optimizing activation functions within the Xception architecture which exploits depthwise separable convolutions for efficient and detailed feature extraction. A balanced dataset of 1400 labeled images in four classes was divided into eighty percent for training, ten percent for validation and ten percent for testing. Images were resized to 224 by 224 pixels, converted to grayscale and augmented through zoom, flip and rotation. With identical hyperparameters including a learning rate of 0.001, a batch size of 64 and training for 100 epochs using the Adam optimizer, ReLU, ELU, Leaky ReLU and Swish activation functions were compared. Evaluation metrics comprised accuracy, precision, recall, F1 score and cross entropy loss. ELU achieved the highest test accuracy of 98.57 percent, precision of 0.9864, recall of 0.9857 and F1 score of 0.9857, outperforming ReLU and Leaky ReLU with 97.86 percent accuracy and Swish with 97.14 percent accuracy. The results demonstrate that selecting an optimal activation function substantially enhances convolutional neural network classification of complex batik patterns. The findings offer practical guidance for development of resource aware batik identification systems in support of cultural digitization and education initiatives.

Keywords


Convolutional Neural Network, Activation Function, Xception, South Sulawesi Batik, Classification

Full Text:

PDF

References


B. J. Filia et al., “Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 508–517. doi: 10.1016/j.procs.2023.10.552.

R. Febriani, L. Knippenberg, and N. Aarts, “The Making of a National Icon: Narratives of Batik in Indonesia,” Cogent Arts Humanit, Vol. 10, No. 1, 2023, doi: 10.1080/23311983.2023.2254042.

S. Setianti, L. Gatra Hanafiani, V. Devianti, S. Wahyuni, J. W. Kusuma, and F. Khan, “International Journal of Multidisciplinary Research and Literature Motif Tirtayasa, Kepandean and Kawangsan on Banten Batik in Mathematical Theory,” International Journal of Multidisciplinary Research and Literature IJOMRAL, Vol. 1, No. 3, pp. 241–360, 2022, doi: 10.53067/ijomral.v1i3.

Siti Aisyah, Rini Astuti, Fadhil M Basysyar, Odi Nurdiawan, and Irfan Ali, “Convolutional Neural Networks for Classification Motives and the Effect of Image Dimensions,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 8, No. 1, pp. 181–188, Feb. 2024, doi: 10.29207/resti.v8i1.5623.

A. Prayoga, Maimunah, P. Sukmasetya, Muhammad Resa Arif Yudianto, and Rofi Abul Hasani, “Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta,” Journal of Applied Computer Science and Technology, Vol. 4, No. 2, pp. 82–89, Nov. 2023, doi: 10.52158/jacost.v4i2.486.

D. A. Anggoro, A. A. T. Marzuki, and W. Supriyanti, “Classification of Solo Batik Patterns using Deep Learning Convolutional Neural Networks Algorithm,” Telkomnika (Telecommunication Computing Electronics and Control), Vol. 22, No. 1, pp. 232–240, Feb. 2024, doi: 10.12928/TELKOMNIKA.v22i1.24598.

A. Prayoga, Maimunah, P. Sukmasetya, Muhammad Resa Arif Yudianto, and Rofi Abul Hasani, “Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta,” J. Appl. Comput. SCI. Technol., Vol. 4, No. 2, pp. 82–89, 2023, doi: 10.52158/jacost.v4i2.486

S. A. Al-shami, R. Damayanti, H. Adil, F. Farhi, and A. Al mamun, “Financial and Digital Financial Literacy Through Social Media use Towards Financial Inclusion among Batik Small Enterprises in Indonesia,” Heliyon, Vol. 10, No. 15, Aug. 2024, doi: 10.1016/j.heliyon.2024.e34902.

Nurilmiyanti Wardhani, B. E. W. Asrul, Antonius Riman Tampang, Sitti Zuhriyah, and Abdul Latief Arda, “Classification of Toraja Wood Carving Motif Images using Convolutional Neural Network (CNN),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 8, No. 4, pp. 486–495, Aug. 2024, doi: 10.29207/resti.v8i4.5897.

D. Amalia, A. Rosdiana, N. Al Azizi, A. Wulandari, and U. Islam Nahdlatul Ulama Jepara, “Semiotika Batik Jepara sebagai Bentuk Identitas Budaya Lokal Masyarakat Jepara,” ENTITA: Jurnal Pendidikan Ilmu Pengetahuan Sosial dan Ilmu-Ilmu Sosial, Vol. 6, No. 1, 2024, doi: 10.19105/ejpis.v5i2.12169.

L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “Klasifikasi Citra Motif Batik Banyuwangi menggunakan Convolutional Neural Network,” Jurnal Teknoinfo, Vol. 17, No. 1, p. 203, 2023, doi.org/10.33365/jti.v17i1.2342

D. Sinaga, C. Jatmoko, S. Suprayogi, and N. Hedriyanto, “Multi-Layer Convolutional Neural Networks for Batik Image Classification,” Scientific Journal of Informatics, Vol. 11, No. 2, pp. 477–484, May 2024, doi: 10.15294/sji.v11i2.3309.

M Mesran, Sitti Rachmawati Yahya, Fifto Nugroho, and Agus Perdana Windarto, “Investigating the Impact of ReLU and Sigmoid Activation Functions on Animal Classification using CNN Models,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 8, No. 1, pp. 111–118, Feb. 2024, doi: 10.29207/resti.v8i1.5367.

B. Ramadevi, V. R. Kasi, and K. Bingi, “Fractional Ordering of Activation Functions for Neural Networks: A Case Study on Texas Wind Turbine,” Eng Appl Artif Intell, Vol. 127, p. 107308, Jan. 2024, doi: 10.1016/j.engappai.2023.107308.

L. Nanni, S. Brahnam, M. Paci, and S. Ghidoni, “Comparison of Different Convolutional Neural Network Activation Functions and Methods for Building Ensembles for Small to Midsize Medical Data Sets,” Sensors, Vol. 22, No. 16, Aug. 2022, doi: 10.3390/s22166129.

D. G. T. Meranggi, N. Yudistira, and Y. A. Sari, “Batik Classification using Convolutional Neural Network with Data Improvements,” International Journal on Informatics Visualization, Vol. 6, No. 1, pp. 6–11, 2022, doi: 10.30630/joiv.6.1.716

M. Z. R. Azhary and A. Ritahani Ismail, “Comparative Performance of Different Convolutional Neural Network Activation Functions on Image Classification,” International Journal on Perceptive and Cognitive Computing, Vol. 10, No. 2, pp. 118–122, Jul. 2024, doi: 10.31436/ijpcc.v10i2.490.

A. Mumuni and F. Mumuni, “Data Augmentation: A Comprehensive Survey of Modern Approaches,” Dec. 01, 2022, Elsevier B.V. doi: 10.1016/j.array.2022.100258.

I. D. Susanti, S. Winarno, and J. Zeniarja, “Yogyakarta Batik Image Classification based on Convolutional Neural Network,” Advance Sustainable Science, Engineering and Technology, Vol. 6, No. 1, Jan. 2024, doi: 10.26877/asset.v6i1.18002.

K. Maharana, S. Mondal, and B. Nemade, “A review: Data Pre-Processing and Data Augmentation Techniques,” Global Transitions Proceedings, Vol. 3, No. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.

Y. Brianorman and D. Utami, “Comparative Analysis of CNN Architectures for SIBI Image Classification,” JUITA: Jurnal Informatika, Vol. 12, No. 1, pp. 61–70, May 2024, https://doi: 10.30595/juita.v12i1.20608

F. Subeki and E. Eliyani, “Pengenalan Setengah Wajah menggunakan Arsitektur Xception pada Metode Convolutional Neural Network,” J. Edukasi dan Penelit. Inform., Vol. 10, No. 2, p. 302, 2024, doi: 10.26418/jp.v10i2.73447

P. Wang, Y. Cui, H. Tao, X. Xu, and S. Yang, “Machining Parameter Optimization for a Batch Milling System using Multi-Task Deep Reinforcement Learning,” J Manuf Syst, Vol. 78, pp. 124–152, Feb. 2025, doi: 10.1016/j.jmsy.2024.11.013.

S. Coulibaly, B. Kamsu-Foguem, D. Kamissoko, and D. Traore, “Deep Convolution Neural Network Sharing for the Multi-Label Images Classification,” Machine Learning with Applications, Vol. 10, p. 100422, Dec. 2022, doi: 10.1016/j.mlwa.2022.100422.




DOI: https://doi.org/10.32520/stmsi.v14i5.5281

Article Metrics

Abstract view : 5 times
PDF - 1 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.