Implementation of Indoor 4G Signal Interference Detection using USRP B210 and RTL-SDR

Ciksadan Ciksadan, Feri Thabroni, Suroso Suroso

Abstract


Signal interference is one of the main challenges in maintaining the quality of 4G network services, particularly in indoor environments with complex propagation characteristics. This study aims to develop a 4G signal interference detection system based on Software Defined Radio (SDR), utilizing a USRP B210 device as the transmitter and two RTL-SDR units as receivers. The system is designed to monitor signals in real time at frequencies of 800 MHz and 1700 MHz, and to analyze Received Signal Strength Indicator (RSSI) and Signal-to-Noise Ratio (SNR) parameters from each RTL-SDR to identify potential signal interference. The test results show that RTL1 consistently received signals of higher quality compared to RTL2. At 800 MHz, the SNR difference between the two receivers reached 21.06 dB, while at 1700 MHz it was 15.46 dB. Although no foreign signals were visually detected in the spectrum, the significantly lower SNR values on RTL2 indicate the presence of non-spectral interference, likely caused by differences in propagation conditions such as multipath effects or physical obstructions. These findings demonstrate that the proposed system is capable of detecting hidden interference through a quantitative comparison between two receivers operating simultaneously. This approach proves effective for indoor signal monitoring and can be further developed to support automation using machine learning techniques.

Keywords


Interferensi; Sinyal 4G; USRP B210; RTL-SDR; GNU Radio

Full Text:

PDF

References


T. Oyedare, V. K. Shah, D. J. Jakubisin, and J. H. Reed, “Interference Suppression using Deep Learning: Current Approaches and Open Challenges,” IEEE Access, Vol. 10, No. June, pp. 66238–66266, 2022, doi: 10.1109/ACCESS.2022.3185124.

R. Muralitharan, U. Jayasinghe, R. G. Ragel, and G. M. Lee, “Machine Learning and Deep Learning-based Atmospheric Duct Interference Detection and Mitigation in TD-LTE Networks,” Futur. Internet, Vol. 17, No. 6, p. 237, 2025, doi: 10.3390/fi17060237.

A. Owfi, F. Afghah, and J. Ashdown, “Meta-Learning for Wireless Interference Identification,” IEEE Wirel. Commun. Netw. Conf. WCNC, Vol. 2023-March, 2023, doi: 10.1109/WCNC55385.2023.10119039.

M. Engelhardt, S. Giehl, M. Schubert, A. Ihlow, C. Schneider, A. Ebert, M. Landmann, G. D. Galdo, C. Andrich, “Accelerating Innovation in 6G Research: Real-Time Capable SDR System Architecture for Rapid Prototyping,” IEEE Access, Vol. 12, pp. 118718–118732, 2024, doi: 10.1109/ACCESS.2024.3447884.

R. R. Yakkati, R. R. Yakkati, R. K. Tripathy, and L. R. Cenkeramaddi, “Radio Frequency Spectrum Sensing by Automatic Modulation Classification in Cognitive Radio System using Multiscale Deep CNN,” IEEE Sens. J., Vol. 22, No. 1, pp. 926–938, 2022, doi: 10.1109/JSEN.2021.3128395.

M. B. Perotoni and K. M. G. dos Santos, “SDR-based Spectrum Analyzer based in Open-Source GNU Radio,” J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 20, No. 3, pp. 542–555, 2021, doi: 10.1590/2179-10742021V20I31194.

M. P. Stef and Z. A. Polgar, “Software Platform for the Comprehensive Testing of Transmission Protocols Developed in GNU Radio,” Inf., Vol. 15, No. 1, 2024, doi: 10.3390/info15010062.

J. P. Manzano, V. M. Maroto, A. Villarín, J. Pagan, and K. Kunci, “HackRF + GN U Radio : Radio yang ditentukan perangkat lunak untuk mengajarkan Teori Komunikasi Alberto a Del Barrio Marina Zapater , José Ayala dan Perkenalan”.

I. Samy, X. Han, L. Lazos, M. Li, Y. Xiao, and M. Krunz, “Misbehavior Detection in Wi-Fi/LTE Coexistence Over Unlicensed Bands,” IEEE Trans. Mob. Comput., Vol. 22, No. 8, pp. 4773–4791, 2023, doi: 10.1109/TMC.2022.3164326.

M. Seguin, A. Omer, M. Koosha, F. Malandra, and N. Mastronarde, “Deep Reinforcement Learning for Downlink Scheduling in 5G and Beyond Networks: A Review,” IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, 2023, doi: 10.1109/PIMRC56721.2023.10293754.

S. Jere, Y. Wang, I. Aryendu, S. Dayekh, and L. Liu, “Bayesian Inference-Assisted Machine Learning for Near Real-Time Jamming Detection and Classification in 5G New Radio (NR),” IEEE Trans. Wirel. Commun., Vol. 23, No. 7, pp. 7043–7059, 2024, doi: 10.1109/TWC.2023.3337058.

P. K. Nakarmi, J. Sternby, and I. Ullah, “Applying Machine Learning on RSRP-based Features for False Base Station Detection,” ACM Int. Conf. Proceeding Ser., No. Ares, pp. 1–9, 2022, doi: 10.1145/3538969.3543787.

N. Bello and K. O. Ogbeide, “Designing a Real-time Swept Spectrum Analyser with USRP B210,” Niger. J. Environ. SCI. Technol., Vol. 5, No. 2, pp. 329–339, 2021, doi: 10.36263/nijest.2021.02.0275.

J. Long, R. Frekuensi, H. F. J. Lami, and S. I. Pella, “Analisis Dampak Interferensi terhadap Kualitas Sinyal,” J. media elektro, Vol. XI, No. 1, pp. 31–38, 2022, doi: 10.35508/jme.

F. H. Melvandino, W. Y. Bragaswara, H. Ramza, F. T. Industri, T. Elektro, and K. Rambutan, “Analisis Test Kelurahan Kampung Rambutan , Jakarta,” Vol. 11, No. 3, 2023.




DOI: https://doi.org/10.32520/stmsi.v14i5.5450

Article Metrics

Abstract view : 5 times
PDF - 5 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.