Implementation of a Network Security System using an Intrusion Prevention System with Machine Learning

Andre Pardamean Lumban, Agus Tedyyana, Nurmi Hidayasari

Abstract


This research develops a machine learning-based Intrusion Prevention System (IPS) to automatically detect and prevent network attacks. The system was designed using the Random Forest algorithm, trained on the CICIDS2017 and CICIDS2019 datasets—standard benchmarks developed by the Canadian Institute for Cybersecurity, widely used in cybersecurity research for their realistic network traffic and diverse attack types. The system focuses on three common attacks: SYN Flood, Port Scanning, and SSH Patator. After preprocessing, training, and evaluation, the model was integrated into the IPS, enabling real-time network monitoring, attacker IP blocking, and automated notifications via Telegram. Testing results indicate that the system achieves high detection accuracy while delivering fast and efficient responses. This system simplifies the work of network administrators by detecting and responding to attacks without the need for manual log monitoring. Through its automated and adaptive approach, the IPS makes a significant contribution to enhancing network security and can be directly implemented in organizational or institutional network environments to substantially reduce the risk of cyberattacks.

Keywords


Intrusion Prevention System; Machine Learning; Random Forest; Network Security; Telegram Notification

Full Text:

PDF

References


R. A. Azmi, K. Rukun, and H. Maksum, “Analisis Kebutuhan Pengembangan Media Pembelajaran berbasis Web Mata Pelajaran Administrasi Infrastruktur Jaringan,” JIPP, Vol. 4, Jul. 2020.

R. E. Susanti, A. W. Muhammad, and W. A. Prabowo, “Implementasi Intrusion Prevention System (IPS) OSSEC dan Honeypot Cowrie,” Jurnal Sisfokom (Sistem Informasi dan Komputer), Vol. 11, No. 1, pp. 73–78, Apr. 2022, DOI: 10.32736/sisfokom.v11i1.1246.

Nuroji, “Penerapan Intrusion Detection and Prevention System (IDPS) pada Jaringan Komputer sebagai Pencegahan Serangan Port-Scanning,” Journal of Data Science and Information System (DIMIS), Vol. 1, pp. 41–49, May 2023, DOI: 10.58602/dimis.v1i2.35.

H. Awal and A. P. Gusman, “Implementasi Intrusion Detection Prevention System sebagai Sistem Keamanan Jaringan Komputer Kejaksaan Negeri Pariaman menggunkan SNORT dan Iptables berbasis Linux,” Jurnal Sains Informatika Terapan (JSIT) E-ISSN, Vol. 2, No. 2, pp. 74–80, Jun. 2023.

R. Kurniawan and F. Prakoso, “Implementasi Metode IPS (Intrusion Prevention System) dan IDS (Intrusion Detection System) untuk meningkatkan Keamanan Jaringan,” Jurnal SENTINEL, Vol. 2, No. 02, pp. 231–242, Jan. 2020.

T. Prasetyo, “Pengamanan Jaringan Komputer dengan Intrusion Prevention System (IPS) berbasis SMS Gateway,” Vol. 2, pp. 1–13, Jun. 2022.

B. Kriswantara and R. Sadikin, “Used Car Price Prediction with Random Forest Regressor Model,” Journal of Information Systems, Informatics and Computing Issue Period, Vol. 6, No. 1, pp. 40–49, Jun. 2022, DOI: 10.52362/jisicom.v6i1.752.

L. I. Uzlah, R. A. Saputra, and Isnawaty, “Deteksi Serangan Siber pada Jaringan Komputer menggunakan Metode Random Forest,” Jurnal Mahasiswa Teknik Informatika, Vol. 8, No. 3, Jun. 2024, [Online]. Available: https://bit.ly/CyberSecurityAttacks.

A. Anggraeni, J. G. A. Ginting, and S. Ikhwan, “Implementation of Intrusion Prevention System (IPS) to Analysis Triad Cia on Network Security Attacks on Web Server,” Jurnal Infotel, Vol. 14, No. 4, pp. 277–286, Nov. 2022, DOI: 10.20895/infotel.v14i4.813.

J. K. Barends, F. Dewanta, and N. B. A. Karna, “Perancangan dan Analisis Intrusion Prevention Sistem berbasis SNORT dan IPTABLES dengan Integrasi Honeypot pada Arsitektur Software Defined Network,” Jurnal Multinetics, Vol. 7, No. 2, pp. 163–176, Nov. 2021.

Mr. S. Waskle, Mr. L. Parashar, and Mr. U. Singh, “Intrusion Detection System using PCA with Random Forest Approach,” in Proceedings of the International Conference on Electronics and Sustainable Communication Systems (ICESC 2020), 2020.

M. Thariq and S. Rendratama, “Perancangan dan Analisis Crowdsec sebagai Intrusion Prevention System pada Infrastruktur Server,” Vol. 10, No. 2, pp. 1887–1894, Apr. 2023.

Farhannullah and M. Hardjianto, “Sistem Monitoring Serangan Ssh dengan Metode Intrusion Prevention System (IPS) Fail2ban menggunakan Python pada Sistem Operasi Linux,” Jurnal TICOM: Technology of Information and Communication, Vol. 11, No. 1, pp. 33–38, Sep. 2022.

A. Kurniawan and L. M. Silalahi, “Analisis Keamanan Jaringan menggunakan Intrusion Prevention System (IPS) dengan Metode Traffic Behavior,” ELECTRICIAN – Jurnal Rekayasa dan Teknologi Elektro, Vol. 17, No. 1, pp. 71–76, Jan. 2023.

S. Goutama, A. Noertjahyana, and H. N. Palit, “Simulasi Aplikasi untuk mendeteksi dan mencegah Serangan DDoS pada Jaringan berbasis Software Defined Network,” Jurnal Infra, Vol. 10, No. 1 (2022), Jan. 2022.




DOI: https://doi.org/10.32520/stmsi.v14i6.5460

Article Metrics

Abstract view : 7 times
PDF - 2 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.