Sentiment Analysis of MyBCA Application User Reviews using Naive Bayes, Random Forest, and Decision Tree

Muhammad Rizky Mawandhyka Akbar, Irfan Pratama

Abstract


In today’s era of globalization, rapid technological advancements are driving innovation across various sectors, including the banking industry. One of the key digital innovations in banking is mobile banking (m-banking), which allows customers to perform transactions via smartphones. This study aims to analyze the sentiment of user reviews on the MyBCA application using three classification methods: Naive Bayes, Random Forest, and Decision Tree. A total of 5,000 user reviews were collected from the Google Play Store through web scraping techniques. The data was preprocessed using the TF-IDF weighting method and processed with Python programming language and the Scikit-Learn library. The dataset was split into 90% training data and 10% testing data. This study also applies the ISO 9126 standard for multi-label classification to assess software quality based on Usability, Efficiency, Functionality, Reliability, and Maintainability. Evaluation results indicate that Random Forest achieved the highest accuracy at 94.09%, outperforming Naive Bayes (81.77%) and Decision Tree (82.38%). This research contributes to the development of a sentiment-based evaluation method for mobile banking applications, integrating user feedback analysis with ISO 9126 quality standards, and offers a useful reference for improving digital banking services.

Keywords


Sentiment Analysis, Mobile Banking; MyBCA; Machine Learning ,ISO-9126

Full Text:

PDF

References


R. Mahmudah, “Pengaruh Persepsi Kegunaan, Kemudahan Penggunaan, Kepercayaan, Kualitas Layanan, dan Word Of Mouth terhadap Minat Penggunaan Mobile Banking 2020 (Studi Kasus Nasabah BRI KC Semarang),” 2021.

A. Fitria, A. Munawar, and P. P. Pratama, “Pengaruh Penggunaan Internet Banking, Mobile Banking dan SMS Banking terhadap Kepuasan Nasabah Bank BNI,” Jurnal Informatika Kesatuan, Vol. 1, No. 1, pp. 43–52, Aug. 2021, doi: 10.37641/jikes.v1i1.406.

C. V. Putra, J. A. Caesaria, J. Jonathan, L. Willson, M. Mellysa, M. Tan, N. Christanto, and Z. Sia., “Analisis Digital Marketing Antara Aplikasi Mybca dan Wondr By BNI,” Jurnal Ilmiah Manajemen dan Akuntansi, Vol. 1, No. 6, pp. 24–33, Nov. 2024, doi: 10.69714/1qrt1r98.

N. Habibah “Analisis Sentimen mengenai Penggunaan E-Wallet pada Google Play menggunakan Lexicon based dan K-Nearest Neighbor Tugas Akhir” 2023.

M. R. Fahlevvi, “Analisis Sentimen terhadap Ulasan Aplikasi Pejabat Pengelola Informasi dan Dokumentasi Kementerian dalam Negeri Republik Indonesia di Google Playstore menggunakan Metode Support Vector Machine,” Jurnal Teknologi dan Komunikasi Pemerintahan, Vol. 4, No. 1, pp. 1–13, 2022, [Online]. Available: http://ejournal.ipdn.ac.id/JTKP,

M. Al Khadafi, K. P. Kartika, and F. Febrinita, “Penerapan Metode Naïve Bayes Classifier dan Lexicon based untuk Analisis Sentimen Cyberbullying pada BPJS,” 2022.

W. Nugroho and D. D. Disetujui, “Evaluasi Kualitas Digital Payment OVO berdasarkan Faktor Usability Standar ISO/IEC 9126,” Journal Computer Science, Vol. 1, No. 1, 2022.

S. S. Hasibuan and J. M. I. Budidarma, “Sentimen Analisis terhadap Fitur TikTok Shop menggunakan Naive Bayes dan K‑Nearest Neighbor,” Jurnal Media Informatika Budidarma, 2024.

A. H. Nasrullah, “Implementasi Algoritma Decision Tree untuk Klasifikasi Produk Laris,” Vol. 7, No. 2, 2021, [Online]. Available: http://ejournal.fikom-unasman.ac.id

D. Irawan, E. B. Perkasa, Y. Yurindra, D. Wahyuningsih, and E. Helmud, “Perbandingan Klassifikasi SMS berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier,” Jurnal Sisfokom (Sistem Informasi dan Komputer), Vol. 10, No. 3, pp. 432–437, Dec. 2021, doi: 10.32736/sisfokom.v10i3.1302.

N. A. Rizqullah, H. Muslimah Az-Zahra, and A. Syawli, “Analisis Kualitas dan Penerapan Software Quality Assurance pada Aplikasi Mobile Banking menggunakan Model ISO/IEC 9126 (Studi Kasus: BSI Mobile),” 2023. [Online]. Available: http://j-ptiik.ub.ac.id

A. Miftahusalam, H. Pratiwi, and I. Slamet, “Perbandingan Metode Random Forest dan Naive Bayes pada Analisis Sentimen Review Aplikasi BCA Mobile,” in Seminar Ilmiah Nasional Teknologi, Sains, dan Humaniora (SIPTEKSHUM), 2023.

I. Zulfahmi, “Analisis Sentimen Aplikasi PLN Mobile menggunakan Metode Decision Tree,” Jurnal Penelitian Rumpun Ilmu Teknik, Vol. 3, No. 1, pp. 11–21, Dec. 2023, doi: 10.55606/juprit.v3i1.3096.

F. Djiwadikusumah, G. H. I, and R. H. Al-Fadilah, “Web Scraping Situs E-Commerce menggunakan Teknik Parsing Dom,” Vol. 7, No. 2, p. 2021, 2021.

A. Agung, A. Daniswara, I. Kadek, and D. Nuryana, “Data Preprocessing Pola pada Penilaian Mahasiswa Program Profesi Guru,” Journal of Informatics and Computer Science, Vol. 05, 2023.

D. Alita and A. Rahman, “Pendeteksian Sarkasme pada Proses Analisis Sentimen menggunakan Random Forest Classifier,” 2020.

A. P. J. Dwitama, “Deteksi Ujaran Kebencian pada Twitter Bahasa Indonesia menggunakan Machine Learning: Reviu Literatur,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, Vol. 1, No. 1, Aug. 2021, doi: 10.20885/snati.v1i1.5.

J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Publik terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, Vol. 4, No. 1, pp. 74–80, Mar. 2023, doi: 10.33365/jatika.v4i1.2468.

D. E. . P. Sari, Y. A. Sari, and M. T.Furqon, “Pembentukan Daftar Stopword menggunakan Zipf Law dan Pembobotan Augmented TF-Probability IDF pada Klasifikasi Dokumen Ulasan Produk,” 2020. [Online]. Available: http://j-ptiik.ub.ac.id

I. N. O. Darmayasa, N. A. S. ER, I. G. A. G. A. Kadyanan, and A. A. I. N. E. Karyawati, “Pengaruh Teknik Penanganan Negasi dalam Analisis Sentimen,” Jurnal Teknologi Informasi dan Ilmu Komputer, Vol. 12, No. 2, pp. 275–282, Apr. 2025, doi: 10.25126/jtiik.2025129079.

A. Rachman, H. T. Prayoga, and S. Sulistyowati, “Pemanfaatan Model ISO 9126 dalam Pengukuran Kualitas Perangkat Lunak Sistem Pengolahan E-Surat,” JURIKOM (Jurnal Riset Komputer), Vol. 9, No. 6, p. 2218, Jan. 2022, doi: 10.30865/jurikom.v9i6.5251.

A. H. Nasrullah, “Implementasi Algoritma Decision Tree untuk Klasifikasi Produk Laris,” Vol. 7, No. 2, 2021, [Online]. Available: http://ejournal.fikom-unasman.ac.id

D. Irawan, E. B. Perkasa, Y. Yurindra, D. Wahyuningsih, and E. Helmud, “Perbandingan Klassifikasi SMS berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier,” Jurnal Sisfokom (Sistem Informasi dan Komputer), Vol. 10, No. 3, pp. 432–437, Dec. 2021, doi: 10.32736/sisfokom.v10i3.1302.

S. Thomas, Yuliana, and N. P., “Studi Analisis Metode Analisis Sentimen pada YouTube,” JIFOTECH (Journal Of Information Technology), Vol. 1, No. 1, 2021.




DOI: https://doi.org/10.32520/stmsi.v14i5.5472

Article Metrics

Abstract view : 4 times
PDF - 4 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.