CNN-Based Model for Classifying Regional Types on Shipping Label Images

Wahyu Kurniawan Ade Nur Widodo, Wiwit Agus Triyanto, Pratomo Setiaji

Abstract


The rapid growth of the e-commerce sector has led to a significant surge in shipping volumes in Indonesia. In logistics systems, a shipping receipt serves as a crucial document containing destination information such as address, city/regency, and postal code. Errors or delays in classifying destination regions not only generate additional operational costs (e.g., reshipment fees and service penalties) but may also reduce customer satisfaction and harm the reputation of service providers. This study proposes the implementation of a Convolutional Neural Network (CNN) model to automatically classify region types in shipping receipt images, aiming to minimize manual errors and accelerate processing time. CNN was chosen for its ability to recognize complex visual patterns in digital documents without requiring manual feature extraction. The dataset used in this study consists of 1,540 shipping receipt images from various courier services, labeled as REG_JAWA and REG_LUARJAWA. The research process includes image preprocessing (resizing, normalization, augmentation), CNN architecture design, model training with early stopping, and performance evaluation using accuracy, precision, recall, and F1-score metrics. The results demonstrate that the model achieved a testing accuracy of 99.87%, precision of 99.71%, and recall of 100%, highlighting its strong potential for real-world implementation in logistics systems to improve efficiency and reliability of deliveries.

Keywords


Convolutional Neural Network; region classification; shipping label image; e-commerce logistics; document image processing

Full Text:

PDF

References


S. S. Viollina (2022). Ketika Pak Pos tidak hanya mengantar Surat: Jasa Pengiriman Pos Indonesia di Mata Pedagang Online. Lembaran Antropologi, 1(1), 34–46. https://doi.org/10.22146/la.3531

F. M. Muhammad, A. B. Elfandra, I. P. A. Amin, A. F. Wicaksono (2023). Pengembangan Model untuk mendeteksi Kerusakan pada Terumbu Karang dengan Klasifikasi Citra. arXiv preprint. arXiv:2308.04337

L. G. M. L. Susanti and N. N. J. Arsawati (2021). Implementasi Deep Learning dengan Convolutional Neural Network untuk Klasifikasi Gambar Sampah Organik dan Anorganik. JISTI, 6(2), 162–171. https://doi.org/10.57093/jisti.v6i2.176

M. Abdalla, M. S. Kasem, M. Mahmoud, B. Yagoub, M. F. Senussi, A. Abdallah, S. H. Kang, H. S. Kang (2025). ReceiptQA: A Question Answering Dataset for Receipt Understanding. Mathematics, 13(11), 1760. https://doi.org/10.3390/math13111760

B. D. Mardiana, W. B. Utomo, U. N. Oktaviana, G. W. Wicaksono, A. E. Minarno (2023). Herbal Leaves Classification Based on Leaf Image using CNN Architecture Model VGG16. Jurnal RESTI, 7(1), 20–26. https://doi.org/10.29207/resti.v7i1.4550

M. Toyib, T. D. K. Pratama, I. Aqil (2024). Penerapan Algoritma CNN untuk mendeteksi Tulisan Tangan Angka Romawi dengan Augmentasi Data. Algoritma, 2(3), 108–120. https://doi.org/10.62383/algoritma.v2i3.69.

I. K. I. Saputra (2023). Klasifikasi Citra Mutu Kemasan menggunakan Metode Convolutional Neural Network dengan Arsitektur MobileNetV2. Progresif, 19(2), 613–622. https://doi.org/10.24198/progresif.v19i2.1411

T. W. Qur’ana (2023). Implementasi Metode Convolutional Neural Network untuk Klasifikasi Motif Citra Sasirangan. Madani, 1(7), 649–656. https://doi.org/10.30656/madani.v1i7.825

S. Aisyah, R. Astuti, F. M. Basysyar, O. Nurdiawan, I. Ali (2024). Convolutional Neural Networks for Classification Motives and the Effect of Image Dimensions. Jurnal RESTI, 8(1), 181–188. https://doi.org/10.29207/resti.v8i1.5623

J.-M. Yu and H.-J. Ma (2024). Receipt Recognition Technology Driven by Multimodal Alignment and Lightweight Sequence Modeling. Electronics (Basel), 14(9), 1717. https://doi.org/10.3390/electronics14091717

P. A. K. Setiaji and B. Surarso (2024). Deep Learning Algorithm as an Alternative of Automatic Classification of Dirty Eggs. Ingénierie des Systèmes d’Information, 29(2), 177–183. https://doi.org/10.18280/isi.290201

I. Wulandari, H. Yasin, and T. Widiharih, "Klasifikasi Citra Digital Bumbu dan Rempah dengan Algoritma Convolutional Neural Network (CNN)," Jurnal Gaussian, Vol. 9, No. 3, pp. 273-282, Aug. 2020. https://doi.org/10.14710/j.gauss.9.3.273-282

A. Antoni (2023). Implementasi Algoritma CNN untuk Klasifikasi Citra Kemasan Kardus Defect dan No Defect. BITS, 4(4), 1941–1950. https://doi.org/10.47065/bits.v4i4.3270

S. Auliaddina and T. Arifin (2024). Use of Augmentation Data and Hyperparameter Tuning in Batik Type Classification using the CNN Model. SISTEMASI, 13(1)

I. U. W. Mulyono (2024). A High Accuracy of Deep Learning Based CNN Architecture: Classic, VGGNet, and ResNet 50 for Covid 19 Image Classification. Telkomnika, 22(5), 1187–1195. https://doi.org/10.12928/telkomnika.v22i5.26017

E. Miranda and M. Aryuni (2021). Klasifikasi Tutupan Lahan menggunakan Convolutional Neural Network pada Citra Satelit Sentinel 2. SISTEMASI, 10(2), 233–241. https://doi.org/10.24198/stmsi.v10i2.1226

M. F. Naufal and S. F. Kusuma, "Weather Image Classification using Convolutional Neural Network with Transfer Learning," AIP Conference Proceedings, Vol. 2470, No. 1, Art. No. 050004, Apr. 25, 2022, https://doi.org/10.1063/5.0080195

Triyanto, W. A., Adi, K., & Suseno, J. E. (2024). Indoor Location Mapping of Lameness Chickens with Multi Cameras and Perspective Transform using Convolutional Neural Networks. Mathematical Modelling of Engineering Problems, 11(2), 539–548. https://doi.org/10.18280/mmep.110227




DOI: https://doi.org/10.32520/stmsi.v14i6.5584

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.