Implementation of the Apriori Algorithm for Clothing Store Product Recommendations based on Sales Transaction History

M Ilham Saputro, Arif Nur Rohman

Abstract


This study is motivated by the limitations faced by small-scale clothing stores, which generally do not have customer ratings or reviews that can be used as a basis for product recommendations. This condition necessitates an alternative method capable of utilizing available sales transaction data. The objective of this study is to generate product recommendations by identifying consumer purchasing patterns through the application of the Apriori Algorithm. The methodology involves processing sales transaction data consisting of transaction codes, lists of purchased products, and transaction timestamps. Support, confidence, and lift ratio values are calculated to generate and validate association rules among products. The analyzed data are derived from the transaction history of a clothing store and are processed using a web-based system developed with PHP and MySQL. The experimental results indicate that several product combinations achieve confidence values of 50% and lift ratios greater than or equal to 1, suggesting that these patterns can be used as a basis for product recommendations. These findings demonstrate a strong association among items that are frequently purchased together. Based on the results, this study concludes that the Apriori Algorithm is effective in identifying meaningful purchasing patterns that can support product arrangement strategies and inventory management in small-scale clothing stores.

Keywords


Apriori Algorithm; Clothing Store; Data Mining; Product Recommendation; Transaction History

Full Text:

PDF

References


R. P. Aditya, N. Wanti, and W. Sari, “Rekomendasi Paket Menu pada Cafe ABC berbasis Website: Implementation of Apriori Algorithm for Menu Package Recommendations at Cafe ABC based on Websites,” Vol. 11, No. 2, 2023, DOI: https://doi.org/10.21107/simantec.v11i2.16343.

N. N. Merliani, N. I. Khoerida, N. T. Widiawati, L. A. Triana, and P. Subarkah, “Penerapan Algoritma Apriori pada Transaksi Penjualan untuk Rekomendasi Menu Makanan dan Minuman,” J. Nas. Teknol. dan Sist. Inf., Vol. 8, No. 1, pp. 9–16, 2022, DOI: 10.25077/teknosi.v8i1.2022.9-16.

M. U. Albab and D. Hidayatullah, “Penerapan Algoritma Apriori pada Sistem Informasi Inventori Toko,” J. Media Inform. Budidarma, Vol. 6, No. 3, p. 1321, 2022, DOI: 10.30865/mib.v6i3.4160.

A. Setiawan and R. Mulyanti, “Market Basket Analysis dengan Algoritma Apriori pada Ecommerce Toko Busana Muslim Trendy,” JUITA J. Inform., Vol. 8, No. 1, p. 11, 2020, DOI: 10.30595/juita.v8i1.4550.

S. Aulia Miranda, F. Fahrullah, and D. Kurniawan, “Implementasi Association Rule dalam menganalisis Data Penjualan Sheshop dengan menggunakan Algoritma Apriori,” Metik J., Vol. 6, No. 1, pp. 30–36, 2022, DOI: 10.47002/metik.v6i1.342.

D. Ramadhan, S. Syam, R. Kurniasari, and T. Hidayat, “Implementasi Algoritma Apriori pada Transaksi Penjualan berbasis Web,” J. Tek. Inform. Unis, Vol. 12, No. 1, pp. 77–88, 2024, DOI: 10.33592/jutis.v12i1.5179.

Z. Abidin, A. K. Amartya, and A. Nurdin, “Penerapan Algoritma Apriori pada Penjualan Suku Cadang Kendaraan Roda Dua (Studi Kasus: Toko Prima Motor Sidomulyo),” J. Teknoinfo, Vol. 16, No. 2, p. 225, 2022, DOI: 10.33365/jti.v16i2.1459.

A. Rachmaniar, S. Widayati, and K. Rokoyah, “Sistem Rekomendasi Produk E-Commerce menggunakan Collaborative Filtering dan Content-based Filtering,” J. Inf. Syst. Informatics Comput. Issue Period., Vol. 9, No. 1, pp. 40–54, 2025, DOI: 10.52362/jisicom.v9i1.1904.

C. Y. Hazizah and T. Widiyaningtyas, “Analisis Metode Collaborative Filtering menggunakan KNN dan SVD++ untuk Rekomendasi Produk E-Commerce Tokopedia,” Edumatic J. Pendidik. Inform., Vol. 8, No. 2, pp. 595–604, 2024, DOI: 10.29408/edumatic.v8i2.27793.

K. R. Putra and I. F. Rahman, “MIND (Multimedia Artificial Intelligent Networking Database): Pemanfaatan Metode Collaborative Filtering dengan algoritma KNN pada Sistem Rekomendasi Produk,” J. MIND, Vol. 9, No. 1, pp. 113–123, 2024, DOI: 10.26760/mindjournal.v9i1.113-123.

Y. Aminu and A. Ichwani, “Penggunaan Algoritma Collaborative Filtering pada Sistem Rekomendasi Aplikasi E-Commerce berbasis Website pada Toko Pakaian Biostuff.Id,” J. SIMETRIS, Vol. 15, No. 1, pp. 177–190, 2024. DOI: https://doi.org/10.24176/simet.v15i1.10719.

R. and Rianto, “Sistem Rekomendasi pada Tokopedia menggunakan Algoritma K-Nearest Neighbor,” J. Tek. Komput. AMIK BSI, Vol. 8, No. 1, pp. 103–106, 2022, DOI: 10.31294/jtk.v4i2.

A. Sukanda and A. Andri, “Sistem Rekomendasi menggunakan Algoritma Apriori pada Aplikasi E-Commerce Toko Sudirman Sport,” J. Nas. Ilmu Komput., Vol. 2, No. 1, pp. 64–76, 2021, DOI: 10.47747/jurnalnik.v2i1.523.

R. P. Atadjawa, T. Haryanti, and L. Kurniawati, “Penerapan Asosiasi Algoritma Apriori pada Data Penjualan Alat-Alat Listrik dan Tekhnik,” Metik J., Vol. 5, No. 2, pp. 71–76, 2021, DOI: 10.47002/metik.v5i2.290.

D. Kurniawan, M. S. Sipayung, R. Ismayanti, M. R. Ibrahim, Y. Bintan, and S. A. Miranda, “Optimalisasi Strategi Pemenuhan Persediaan Stok Barang menggunakan Algoritma Frequent Pattern Growth,” Metik J., Vol. 6, No. 2, pp. 104–114, 2022, DOI: 10.47002/metik.v6i2.387.

A. Setiawan and F. P. Putri, “Implementasi Algoritma Apriori untuk Rekomendasi Kombinasi Produk Penjualan,” Ultim. J. Tek. Inform., Vol. 12, No. 1, pp. 66–71, 2020, DOI: 10.31937/ti.v12i1.1644.




DOI: https://doi.org/10.32520/stmsi.v15i1.5648

Article Metrics

Abstract view : 4 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.