Adaptive Integration Optimization of Naïve Bayes and Information Gain for Diabetes Complication Prediction

Farid Fitriyadi, Indriyati Indriyati

Abstract


Diabetes mellitus is a major global health issue with a steadily increasing prevalence in Indonesia, including the Surakarta region. Diabetes complications are among the leading causes of mortality and reduced quality of life in patients, while also imposing a significant economic burden. This situation highlights the need for an accurate predictive model to identify both high- and low-risk patients, particularly in primary healthcare facilities that still face limitations in conducting comprehensive risk prediction. This study aims to develop a predictive model for diabetes complications by optimizing the adaptive integration of the Naïve Bayes algorithm with Information Gain for feature selection. The dataset used includes demographic variables (age, gender), clinical data (blood glucose level, HbA1c, blood pressure), medical history (family history of diabetes), and lifestyle factors (physical activity, dietary patterns). The results indicate that the pure Naïve Bayes algorithm achieved an accuracy of 75%. After applying Information Gain for feature selection, the accuracy improved to 87.5%, representing a 12.5% increase. These findings demonstrate that integrating Naïve Bayes with Information Gain can produce a more accurate prediction model for diabetes complications, making it a potentially effective decision-support tool for healthcare professionals in preventing complications and reducing the burden on the healthcare system.

Keywords


prediction; diabetes complications; optimization; naïve bayes; information gain

Full Text:

PDF

References


Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:1–23. Available from: https://doi.org/10.1016/j.diabres.2021.109119

Aisyah R, Mahmudah N, Candrasari A, Sintowati R, Bestari RS, Rosyidah DU, et al. Improving Health Profiles and Type 2 Diabetes Mellitus Knowledge of Community Groups in Karanglo Village , Grogol , Sukoharjo , Central Java , Indonesia Through the SEE Method. 2024;10(4):196–203. Available from: https://doi.org/10.22146/jpkm.95765

Mezil, Sabreen A BA abed. Complication of Diabetes Mellitus Complication of Diabetes Mellitus. Ann Rom Soc Cell Biol. 2021;25(3)(3):1546–56. Available from: https://www.proquest.com/openview/1edb7aa55be175af429f8b2b45ab2bae/1?cbl=2031963&pq-origsite=gscholar

Hadi C, Isa M, Sutrisna E, Pangestu M. Patient Satisfaction and Compliance in One-Day Care Chemotherapy : A Study at Dr . Moewardi Hospital. 2025;14(April):20–31. Available from: https://doi.org/10.18196/jmmr.v14i1.531

Setyawati R, Astuti A, Utami TP, Adiwijaya S, Hasyim DM. The Importance of Early Detection in Disease Management the Importance of Early Detection in Disease Management Sekolah Tinggi Ilmu Kesehatan Kesosi , Indonesia Poltekkes Kemenkes Kupang , Indonesia Universitas Esa Unggul , Indonesia Universitas Palangka. J World Futur Med Heal Nurs. 2024;2(1):50–63. Available from: https://doi.org/10.55849/health.v2i1.692

Feng B, Shi J, Huang L, Yang Z, Feng ST, Li J, et al. Robustly Federated Learning Model for Identifying High-Risk Patients with Postoperative Gastric Cancer Recurrence. Nat Commun. 2024;15(1):1–11. Available from: https://doi.org/10.1038/s41467-024-44946-4

Natarajan K, Baskaran D, Kamalanathan S. An Adaptive Ensemble Feature Selection Technique for Model-Agnostic Diabetes Prediction. Sci Rep. 2025;15(1):1–12. Available from: https://doi.org/10.1038/s41598-025-91282-8

Khan FA, Zeb K, Al-Rakhami M, Derhab A, Bukhari SAC. Detection and Prediction of Diabetes using Data Mining: A Comprehensive Review. IEEE Access. 2021;9:43711–35. Available from: http://doi.org/10.1109/ACCESS.2021.3059343

Khurshid MR, Manzoor S, Sadiq T, Hussain L, Khan MS, Dutta AK. Unveiling Diabetes Onset: Optimized XGBoost with Bayesian Optimization for Enhanced Prediction. PLoS One [Internet]. 2025;20(1 January):1–29. Available from: http://dx.doi.org/10.1371/journal.pone.0310218

Wibowo A, Masruriyah AFN, Rahmawati S. Refining Diabetes Diagnosis Models: The Impact of SMOTE on SVM, Logistic Regression, and Naïve Bayes for Imbalanced Datasets. J Electron Electromed Eng Med Informatics. 2025;7(1):197–207. Available from: https://doi.org/10.35882/jeeemi.v7i1.596

Fitriyah, L. (2024). Implementasi Extreme Gradient Boosting (Xgboost) untuk Klasifikasi Risiko Diabetes Mellitus berdasarkan Riwayat Kesehatan guna meningkatkan Diagnosa Dini (Doctoral dissertation, Universitas Islam Sultan Agung Semarang).

Laksono, H., Heriyanto, H., & Apriani, R. (2022). Determinan Faktor Kejadian Komplikasi pada Penderita Diabetes Melitus di Kota Bengkulu Tahun 2021. Journal of Nursing and Public Health, 10(1), 68-78.

Cahyaningtyas, U., & Werdiningsih, R. (2022). Analisis Faktor Lama Penyembuhan Kaki Diabetes/Ulkus Diabetikum pada Pasien DM Tipe 2. Jurnal Media Administrasi, 7(1), 28-39.

Istiono, W., Sutomo, A. H., Izhar, M. D., & Welembuntu, M. (2024). Strategi Penerapan Patient Centered Care pada Pelayanan Kesehatan Primer. UGM PRESS.

L. A. Puspita, R. (2023). Hubungan Antara Perilaku Pencegahan Luka Kaki dan Gambaran Kaki Diabetik Pasien Diabetes Melitus (Doctoral dissertation, Universitas Islam Sultan Agung Semarang).

Al-Hussein F, Tafakori L, Abdollahian M, Al-Shali K, Al-Hejin A. Predicting Type 2 Diabetes Onset Age using Machine Learning: A Case Study in KSA. PLoS One [Internet]. 2025;20(2 February). Available from: https://doi.org/10.1371/journal.pone.0318484

17. Zhou H, Xin Y, Li S. A Diabetes Prediction Model based on Boruta Feature Selection and Ensemble Learning. BMC Bioinformatics [Internet]. 2023;24(1):1–34. Available from: https://doi.org/10.1186/s12859-023-05300-5

Lim H, Kim G, Choi JH. Advancing Diabetes Prediction with a Progressive Self-Transfer Learning Framework for Discrete Time Series Data. Sci Rep [Internet]. 2023;13(1):1–14. Available from: https://doi.org/10.1038/s41598-023-48463-0

Nilashi M, Abumalloh RA, Alyami S, Alghamdi A, Alrizq M. A Combined Method for Diabetes Mellitus Diagnosis Using Deep Learning, Singular Value Decomposition, and Self-Organizing Map Approaches. Diagnostics. 2023;13(10). Available from: https://doi.org/10.3390/diagnostics13101821

Setiawan, Zunan, et al. Pengantar Sistem Informasi: Konsep Dasar dan Aplikasi Praktis. PT. Sonpedia Publishing Indonesia, 2024..

Ramadhana, H. (2024). Hubungan Tingkat Kepatuhan Minum Obat Anti Diabetes dengan Kadar Gula Darah pada Pasien Diabetes Melitus di Klinik Sakti Medika di Kota Nganjuk (Doctoral Dissertation, STIKES Notokusumo Yogyakarta).

Ramadhani RN, Humairah I, Novida H, Qurnianingsih E. Dyslipidemia is Associated with Coronary Heart Disease in Patients with Type 2 Diabetes Mellitus at a Tertiary Hospital in Surabaya, Indonesia. 2025;06(1):24–30. Available from: https://doi.org/10.20473/cimrj.v6i1.64560

Hasanah U, Dewi NR, Ludiana L, Pakarti AT, Inayati A. Analisis Faktor-Faktor Risiko Terjadinya Penyakit Ginjal Kronik pada Pasien Hemodialisis. J Wacana Kesehat. 2023;8(2):96. Available from: https://doi.org/10.52822/jwk.v8i2.531

Norhalimi M, Siswa TAY. Optimasi Seleksi Fitur Information Gain pada Algoritma Naïve Bayes dan K-Nearest Neighbor. JISKA (Jurnal Inform Sunan Kalijaga). 2022;7(3):237–55. Available from: https://doi.org/10.14421/jiska.2022.7.3.237-255

Luthfiyyah IQ, Sari BN, Ridwan T. Analisis Sentimen Mahasiswa terhadap Kurikulum Literasi Digital di Universitas Singaperbangsa Karawang menggunakan Naïve Bayes. J Process. 2024;19(1):122–36. Available from: https://doi.org/10.33998/processor.2024.19.1.1669

Farhan NM, Setiaji B. Indonesian Journal of Computer Science. Indones J Comput Sci [Internet]. 2023;12(2):284–301. Available from: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135

Aryani LN, Dantes GR, Ernanda Aryanto KY. Pendekatan Zachman Framework untuk Perancangan Arsitektur Integrasi Data Sistem Remunerasi. J Nas Pendidik Tek Inform. 2022;11(1):23. Available from: https://doi.org/10.23887/janapati.v11i1.40181

Palupi, L., Ihsanto, E., & Nugroho, F. (2023). Analisis Validasi dan Evaluasi Model Deteksi Objek Varian Jahe Menggunakan Algoritma Yolov5. Journal of Information System Research (JOSH), 5(1), 234-241.

Swastika, R., Mukodimah, S., Susanto, F., Muslihudin, M., & Adab, S. I. P. (2023). Implementasi Data Mining (Clastering, Association, Prediction, Estimation, Classification). Penerbit Adab.

Saracoglu BO. Development Progress of Power Prediction Robot and Platform: Its World Level Very Long Term Prototyping Example. J Energy Syst. 2022;6(2):253–89. Available from: https://doi.org/10.30521/jes.1021838




DOI: https://doi.org/10.32520/stmsi.v14i6.5666

Article Metrics

Abstract view : 5 times
PDF - 2 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.