Development of Hybrid K-Means DBSCAN Algorithm for Optimization of Landslide-Prone Area Clusters based on Web-GIS

Dede Irmayanti, Teguh Iman Hermanto

Abstract


Landslides represent one of the major geological hazards in West Java Province, posing serious impacts on social life, economic activities, and public infrastructure. A key challenge in landslide mitigation lies in the inaccuracy of spatial and temporal classification of landslide-prone areas, as well as the limitations of single-method approaches in disaster data analysis. This study aims to develop a data-driven classification model for landslide-prone areas using a hybrid clustering approach that combines the K-Means and DBSCAN algorithms. The dataset consists of landslide incident records from 2020 to 2024 and administrative spatial data at the regency/city level. The analysis stages include data integration and normalization, statistical exploration, the application of K-Means clustering as a global segmentation framework, and DBSCAN for identifying local patterns and outliers. Model validation was conducted using internal evaluation metrics, yielding a Silhouette Coefficient of 0.448 and a Davies–Bouldin Index of 0.602, indicating that the hybrid method provides superior performance in terms of cluster compactness and separation. The classification results are visualized through an interactive Web-GIS platform developed using Streamlit and Folium, enabling users to select specific years and classification methods while displaying mitigation strategies based on risk categories. This study concludes that the hybrid clustering approach enhances the accuracy of landslide-prone area classification and makes a significant contribution to the provision of more adaptive and practical spatial information to support mitigation policy decision-making in landslide-vulnerable regions.

Keywords


cluster validation; DBSCAN; hybrid clustering; k-means; web-GIS

Full Text:

PDF

References


M. Firman, A. Halik, and L. Septiana, “Analisa Data untuk Prediksi Daerah Rawan Bencana Alam di Jawa Barat menggunakan Algoritma K-Means Clustering,” Journal of Information System, Applied, Management, Accounting and Research, Vol. 6, No. 4, pp. 856–870, 2022, DOI: 10.52362/jisamar.v6i4.939.

N. Nurahman and N. A. Tanjung, “Clustering Village Development in West Java Province on the Condition of Developing Village Strata using K-Means Algorithm,” Jurnal Penelitian Pendidikan IPA, Vol. 9, No. SpecialIssue, pp. 299–306, Dec. 2023, DOI: 10.29303/jppipa.v9ispecialissue.5937.

A. R. Azzahra, P. Kristalina, and N. Sa’Adah, “East Java Rivers Characterization using Analytical Hierarchical Clustering on Supporting Disaster Management System,” in 2024 International Electronics Symposium (IES), 2024, pp. 650–655. DOI: 10.1109/IES63037.2024.10665866.

K. M. P. Dewi, M. L. Tauryawati, and A. F. Zainuddin, “Clustering of Disaster Prones Areas in Java Island,” AIP Conf Proc, Vol. 3201, No. 1, p. 020003, Nov. 2024, DOI: 10.1063/5.0230700.

I. S. Fauzi, N. Nuraini, R. W. S. Ayu, and B. W. Lestari, “Temporal Trend and Spatial Clustering of the Dengue Fever Prevalence in West Java, Indonesia,” Heliyon, Vol. 8, No. 8, p. e10350, 2022, DOI: https://doi.org/10.1016/j.heliyon.2022.e10350.

S. H. Jessen, Z. G. Ma, F. D. Wijaya, J. C. Vasquez, J. Guerrero, and B. N. Jørgensen, “Identification of Natural Disaster Impacted Electricity Load Profiles with K-Means Clustering Algorithm,” Energy Informatics, Vol. 5, Dec. 2022, DOI: 10.1186/s42162-022-00237-0.

R. A. Ekaputra, C. Lee, S. H. Kee, and J. J. Yee, “Emergency Shelter Geospatial Location Optimization for Flood Disaster Condition: A Review,” Oct. 01, 2022, MDPI. DOI: 10.3390/su141912482.

N. Dwitiyanti, S. A. Kumala, and S. D. Handayani, “Comparative Study of Earthquake Clustering in Indonesia using K-Medoids, K-Means, DBSCAN, Fuzzy C-Means and K-AP Algorithms,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 8, No. 6, pp. 768–778, Dec. 2024, DOI: 10.29207/resti.v8i6.5514.

R. Oktarina and Junita, “Determine the Clustering of Cities in Indonesia for Disaster Management using K-Means by Excel and RapidMiner,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Aug. 2021. DOI: 10.1088/1755-1315/794/1/012094.

M. Shafapourtehrany, P. Yariyan, H. Özener, B. Pradhan, and F. Shabani, “Evaluating the Application of K-Mean Clustering in Earthquake Vulnerability Mapping of Istanbul, Turkey,” International Journal of Disaster Risk Reduction, Vol. 79, p. 103154, 2022, DOI: https://doi.org/10.1016/j.ijdrr.2022.103154.

A. Prasetyadi, B. Nugroho, and M. G. Putra, “Determining Natural Disaster Mitigation Level using Unsupervised K-Means Clustering,” in 2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS), 2022, pp. 1–5. DOI: 10.1109/NISS55057.2022.10085620.

T. Handhayani and Z. Rusdi, “K-Means using Dynamic Time Warping for Clustering Cities in Java Island According to Meteorological Conditions,” in 2023 Eighth International Conference on Informatics and Computing (ICIC), 2023, pp. 1–6. DOI: 10.1109/ICIC60109.2023.10381899.

K. E. Setiawan, A. Kurniawan, A. Chowanda, and D. Suhartono, “Clustering Models for Hospitals in Jakarta using Fuzzy C-Means and K-Means,” Procedia Comput SCI, Vol. 216, pp. 356–363, 2023, DOI: https://doi.org/10.1016/j.procs.2022.12.146.

S. U. Afifah, A. Fariza, and A. Basofi, “Spatial-Temporal Visualization of Tuberculosis Vulnerability in East Java, Indonesia, using the K-Medoids Clustering Algorithm,” in 2022 International Electronics Symposium (IES), 2022, pp. 442–447. DOI: 10.1109/IES55876.2022.9888389.

W. Hadikurniawati, K. D. Hartomo, and I. Sembiring, “Spatial Clustering of Child Malnutrition in Central Java: A Comparative Analysis using K-Means and DBSCAN,” in 2023 International Conference on Modeling & E-Information Research, Artificial Learning and Digital Applications (ICMERALDA), 2023, pp. 242–247. DOI: 10.1109/ICMERALDA60125.2023.10458202.

E. Choi and J. Song, “Clustering-based Disaster Resilience Assessment of South Korea Communities Building Portfolios using Open GIS and Census Data,” International Journal of Disaster Risk Reduction, Vol. 71, p. 102817, 2022, DOI: https://doi.org/10.1016/j.ijdrr.2022.102817.

J. L. Duykers, K. Ardana, R. Yulistiani, E. Irwansyah, and D. Fitrianah, “Identifying Factors for Supporting Early Warning Flood using Clustering Approach and Geo-Spatial Analysis,” Procedia Comput SCI, Vol. 227, pp. 540–547, 2023, DOI: https://doi.org/10.1016/j.procs.2023.10.556.

K. H. Izzuddin and A. W. Wijayanto, “Pemodelan Clustering Ward, K-Means, DIANA, dan PAM dengan PCA untuk Karakterisasi Kemiskinan Indonesia Tahun 2021,” Jurnal Sistem Komputer, Vol. 13, No. 1, p. 2020, 2024, DOI: 10.34010/komputika.v13i1.10803.

S. Sun, K. Lei, Z. Xu, W. Jing, and G. Sun, “Analysis of K-Means and K-DBSCAN Commonly used in Data Mining,” in 2023 International Conference on Intelligent Media, Big Data and Knowledge Mining (IMBDKM), 2023, pp. 37–41. DOI: 10.1109/IMBDKM57416.2023.00014.




DOI: https://doi.org/10.32520/stmsi.v15i1.5671

Article Metrics

Abstract view : 5 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.