User Review Automation: Detecting Actionable Complaints on Gojek in the Play Store using the LSTM Method
Abstract
system. Processing is carried out using three different data sharing ratios, namely 90:10, 80:20, and 70:30 to ensure that the system is stable and effective. The accuracy results of the three data sharing ratios reached above 90%, thus proving that the system is able to detect complaints well. A pre-built dashboard is used to visualize the results of the system built using LSTM to facilitate monitoring the classification results. This system is expected to facilitate companies in detecting all user complaints and finding solutions to improve services to provide comfort for users.
Keywords
Full Text:
PDFReferences
T. M. Adilah, H. Supendar, R. Ningsih, S. Muryani, and K. Solecha, “Sentimen Analysis of Online Transportation Service using the Naive Bayes Methods,” J Phys Conf Ser, Vol. 1641, No. 1, p. 012093, 2020.
D. Nugraha and D. Gustian, “Analisis Sentimen Penggunaan Aplikasi Transportasi Online pada Ulasan Google Play Store Metode Naive Bayes Classfier,” Jurnal Penerapan Sistem Informasi, Vol. 5, No. 1, pp. 326–335, Jan. 2024.
S. Heristian, M. Napiah, and W. Erawati, “Analisis Sentimen Ulasan Pelanggan menggunakan Algoritma Naive Bayes pada Aplikasi Gojek,” Jurnal Computer Science, Vol. 5, No. 1, pp. 35–41, Jan. 2025. DOI: https://doi.org/10.31294/coscience.v5i1.7775.
J. A. Wibowo, V. C. Mawardi, and T. Sutisno, “Penerapan Support Vector Machine untuk Analisis Sentimen Fitur Layanan pada Ulasan Gojek,” Jurnal Ilmu Komputer dan Sistem Informasi, Vol. 12, No. 1, pp. 1–8, Jan. 2024. DOI: https://doi.org/10.24912/jiksi.v12i1.28211.
N. Z. Rania and R. D. Syah, “Analisis Sentimen Terhadap Aplikasi Gojek pada Play Store menggunakan Metode Random Forest Classfier,” Jurnal Ilmiah Informatika Komputer, Vol. 29, No. 2, pp. 144–153, Aug. 2024. tersedia pada: 10.35760/ik.2024.v29i2.11877.
A. Hermawan, I. Jowensen, Junaedi, and Edy, “Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine,” Jurnal Sains dan Teknologi, Vol. 12, No. 1, pp. 129–137, Apr. 2023. DOI: https://doi.org/10.23887/jstundiksha.v12i1.52358.
S. Khairunnisa and A. S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” Jurnal Media Informatika Budidarma, Vol. 5, No. 2, pp. 406–414, Apr. 2021. DOI:https://doi.org/10.30865/mib.v5i2.2835.
E. V. Anthony and S. P. Barus, “Perbandingan Algoritma Machine Learning dan Deep Learning dalam Analisis Sentimen Komentar Video YouTube Berjudul Hidup Tanpa Sosial Media,” Jurnal Informatika dan Komputer, Vol. 9, No. 2, pp. 370–380, Jun. 2025. DOI: http://dx.doi.org/10.26798/jiko.v9i2.1619.
Y. K. Bintang and H. Immanuddin, “Pengembangan Model Deep Learning untuk Deteksi Retinopati Diabetik menggunakan Metode Transfer Learning,” Jurnal Ilmiah Penelitian dan Pembelajaran Informatika, Vol. 9, No. 2, pp. 1442–1455, Sep. 2024. DOI: https://doi.org/10.29100/jipi.v9i3.5588.
M. S. Raiya, M. R. P. Khamil, N. Fadillah, and R. A. Saputra, “Implementasi Algoritma Long Short Term Memory pada Isu Kenaikan Uang Kuliah Tunggal terhadap Minat Kuliah Mahasiswa,” Jurnal Informatika Terpadu, Vol. 11, No. 1, pp. 37–43, Apr. 2025. DOI: https://doi.org/10.54914/jit.v11i1.1656.
A. Rolagon, A. Weku, and G. A. Sandag, “Perbandingan Algoritma LSTM untuk Analisis Sentimen Pengguna Twitter terhadap Layanan Rumah Sakit saat Pandemi Covid-19,” Jurnal TelKa, Vol. 13, No. 1, pp. 31–40, Apr. 2023. DOI: https://doi.org/10.36342/teika.v13i01.3063.
F. Putra, R. M. Ihsan, H. F. Tahiyat, L. Efrizom, and Rahmaddeni, “Evaluasi Performa Aplikasi Gojek melalui Klasifikasi Kata Ulasan Pengguna dengan Metode SVM,” Jurnal Teknologi Informasi, Vol. 23, No. 2, pp. 704–715, Aug. 2024. DOI: https://doi.org/10.62411/tc.v23i3.11379.
C. N. Daiman, A. Y. Rahman, and F. Nudiyansyah, “Klasifikasi Teks Berita Breaking News di Manggarai menggunakan Long Short Term Memory (LSTM),” Jurnal Ilmu Komputer dan Teknik Informatika, Vol. 7, No. 2, pp. 170–174, Sep. 2024. DOI: https://doi.org/10.36040/mnemonic.v7i2.9939.
Juniardi, Tukino, B. Priyatna, and S. S. Hilabi, “Klasifikasi Sentimen Analisis Ulasan Aplikasi Alfagift menggunakan Algoritma Long Short Term Memory ,” Jurnal Ilmiah Teknik dan Ilmu Komputer, Vol. 4, No. 2, pp. 48–55, May 2025. DOI: https://doi.org/10.55123/storage.v4i2.5138.
E. Cahyono and S. Kacung, “Analisis Tingkat Kepuasan Pengguna Sirekap menggunakan Metode Support Vector Machine dan Long Short Term Memory,” Jurnal Informasi Teknologi dan Sains, Vol. 7, No. 2, pp. 913–920, May 2025. DOI: https://doi.org/10.51401/jinteks.v7i2.5867.
M. Novela and T. Basaruddin, “Dataset Suara dan Teks Berbahasa Indonesia pada Rekaman Podcast dan Talk Show,” Jurnal Fasilkom, Vol. 11, No. 2, pp. 61–66, Aug. 2021. DOI: https://doi.org/10.37859/jf.v11i2.2628.
A. F. Aufar, M. A. Rosid, A. Eviyanti, and I. R. I. Astutik, “Mengoptimalkan Preprocessing Teks untuk Analisis Sentimen yang Akurat pada Ulasan E-Wallet,” Journal of Information and Computer Technology Education, Vol. 7, No. 2, pp. 42–50, Oct. 2023. DOI: https://doi.org/10.21070/ups.6279.
H. Syahputra, L. K. Basyar, and A. A. S. Tamba, “Sentimen Analysis of Public Opinion on the Gojek Indonesia Through Twitter Using Algorithm Support Vector Machine,” J Phys Conf Ser, Vol. 1462, No. 012063, 2020.
A. Aljabar and B. M. Karomah, “Mengungkap Opini Publik: Pendekatan BERT-basedcaused untuk Analisis Sentimen pada Komentar Film,” Journal of System and Computer Engineering, Vol. 5, No. 1, pp. 36–43, Jan. 2024.
Susilawati, Z. Sitorus, M. Iqbal, D. Nasution, and R. F. Wijaya, “Penerapan Deep Learning dan Analisis Sentimen terhadap Gap Kompetensi Lulusan Lembaga Pendidikan dan Pelatihan Vokasi terhadap Dunia Kerja dengan Metode Long Short-Term Memory (LSTM),” Jurnal Bulletin Of Information Technology, Vol. 6, No. 2, pp. 161–172, Jun. 2025. DOI: https://doi.org/10.47065/bit.v6i2.2031.
R. Z. N. Ahmad, N. S. Harahap, S. Agustian, I. Iskandar, and S. Sanjaya, “Perbandingan Performa Random Forest dan Long Short-Term Memory dalam Klasifikasi Teks Multilabel Terjemahan Hadits Bukhari,” Indonesia Journal of Machine Learning and Computer Science, Vol. 5, No. 3, pp. 862–874, Jul. 2025. DOI: https://doi.org/10.57152/malcom.v5i3.2046.
B. U. Fahnun and S. A. S. Muhammad, “Perbandingan Model Machine Learning dalam Analisis Sentimen Ulasan Pengguna Aplikasi E-Commerce,” Jurnal Ilmiah Teknologi dan Rekayasa, Vol. 30, No. 1, pp. 73–94, 2025. DOI: http://dx.doi.org/10.35760/tr.2025.v30i1.13530.
A. Winata, M. Lauro, and T. Handhayani, “Perbandingan LSTM dan ELM dalam Memprediksi Harga Pangan Kota Tasikmalaya,” Jurnal Ilmu Komputer dan Sistem Informasi, Vol. 11, No. 2, Aug. 2023. DOI: https://doi.org/10.24912/jiksi.v11i2.26015.
F. Landi, L. Baladi, M. Cornia, and R. Cucchiara, “Working Memory Connections for LSTM,” Neural Network, Vol. 144, pp. 334–341, 2021. DOI: https://doi.org/10.1016/j.neunet.2021.08.030.
E. Verianto, “Penerapan LSTM dengan Regularisasi untuk Mencegah Overfitting pada Model Prediksi Tingkat Inflasi di Indonesia,” Jurnal Sistem Informasi dan Sistem Komputer, Vol. 9, No. 2, Jul. 2024. DOI: https://doi.org/10.51717/simkom.v9i2.460.
DOI: https://doi.org/10.32520/stmsi.v14i6.5708
Article Metrics
Abstract view : 3 timesPDF - 3 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







