Detecting Muslim Students Mental Health with an Islamic Educational Approach using Machine Learning

Taftazani Ghazi Pratama, Toni Ardi Rafsanjani, Riana Putri Rahmawati, Helmi Imaduddin

Abstract


Mental health among university students has become a major concern in higher education, particularly in the post-pandemic era, which has left students facing various academic, social, and psychological pressures. Unfortunately, efforts for early detection of mental health issues on campus remain limited, especially in the context of Muslim students who live within an Islamic cultural framework. This study offers an innovative approach by integrating advanced machine learning technology with the depth of Islamic educational values to develop an early detection system that is not only accurate but also humanistic and contextually relevant. The dataset for this study was obtained through a survey of 127 students at Universitas Muhammadiyah Kudus, including variables related to psychological conditions and the intensity of religious practices, used to detect whether students experience mental health problems or maintain good mental health. The research methodology includes data collection, preprocessing, feature analysis, model development using classification algorithms such as Random Forest, SVM, KNN, and Decision Tree, model performance optimization using GridSearchCV, and evaluation. Evaluation of the four models indicated that prior to optimization, SVM and KNN achieved the best performance, both with an accuracy of 88.46%. After optimization with GridSearchCV, SVM became the top-performing model, achieving an accuracy improvement of more than 5%, reaching 94.05%. Feature analysis revealed that levels of anxiety, fatigue, and religious practices such as prayer and dhikr were the primary determinants in mapping students’ mental health conditions. These findings suggest that Islamic values such as tawakkul (trust in God), sabr (patience), and syukur (gratitude) are not merely theological concepts but can also serve as scientific instruments, converted into predictive features in data-driven technologies. This study demonstrates that an SVM model optimized with GridSearchCV is effective in detecting university students’ mental health and has the potential to serve as an early warning system in Islamic campus settings.

Keywords


Islamic education; machine learning; mental health; muslim students

Full Text:

PDF

References


M. Arif, S. Irfan, M. M. Rhaman Shaoan, and W. Ali, “AI and Machine Learning in Islamic Guidance: Opportunities, Ethical Considerations, and Future Directions,” Guidance, Vol. 21, No. 02, pp. 429–451, 2025, DOI: 10.34005/guidance.v21i02.4449.

Muhammadu Ibrahim Nasrin, “The Influence of Islamic Spiritual Values on Students’ Mental Health: A Special Focus on Tawakkul (توكُّل), Sabr (صبر) and Shukr(شكر),” Lect. J. Islam. Educ. Stud., Vol. 4, No. 2, pp. 260–272, 2025, DOI: 10.58355/lectures.v4i2.150.

M. I. Siraji, A. A. Rahman, M. M. Nishat, M. A. Mamun, F. Faisal, L. I. Khalid, and A. Ahmed, Impact of Mobile Connectivity on Students’ Wellbeing: Detecting Learners’ Depression using Machine Learning Algorithms, Vol. 18, No. 11 November. 2023. DOI: 10.1371/journal.pone.0294803.

M. Razavi, S. Ziyadidegan, A. Mahmoudzadeh, S. Kazeminasab, E. Baharlouei, V. Janfaza, R. Jahromi, and F. Sasangohar, “Machine Learning, Deep Learning, and Data Preprocessing Techniques for Detecting, Predicting, and Monitoring Stress and Stress-Related Mental Disorders: Scoping Review,” JMIR Ment. Heal., Vol. 11, 2024, DOI: 10.2196/53714.

A. Algumaei, N. M. Yaacob, M. Doheir, M. N. Al-Andoli, and M. Algumaie, “Symmetric Therapeutic Frameworks and Ethical Dimensions in AI-based Mental Health Chatbots (2020–2025): A Systematic Review of Design Patterns, Cultural Balance, and Structural Symmetry,” Symmetry (Basel)., Vol. 17, No. 7, 2025, DOI: 10.3390/sym17071082.

N. F. A. Mazzuki, N. S. ssir Sukeri, M. I. Abdullah, U. Jaffer, N. Mohd Kadri, and C. M. N. Che Mohd Nassir, “Spirituality, Spiritual Coping and Mental Well-Being among Malaysian Medical and Health Sciences Students,” Int. J. Educ. Psychol. Couns., Vol. 9, No. 56, pp. 897–910, 2024, DOI: 10.35631/ijepc.956055.

E. Oksanda and E. Zulaifah, “Religiosity, Resilience and Psychological Well-Being among University Students in Indonesia,” Int. J. Islam. Psychol., Vol. 8, No. 1, pp. 64–5, 2025, [Online]. Available: https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32016R0679&from=PT%0Ahttp://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012PC0011:pt:NOT

M. Çınaroğlu, “Islamically Modified Cognitive Behavioral Therapy,” Din ve İnsan Derg., Vol. 4, No. 7, pp. 60–85, 2024, DOI: 10.69515/dinveinsan.1437013.

M. N. Hossain, N. Fahad, R. Ahmed, A. Sen, M. S. Al Huda, and M. I. Hossen, “Preventing Student’s Mental Health Problems with the Help of Data Mining,” Int. J. Comput., Vol. 23, No. 1, pp. 101–108, 2024, DOI: 10.47839/ijc.23.1.3441.

M. Huda and S. Slamet, “Mental Health Concept in Islamic Education,” Int. J. Educ. Elem. Psychol., Vol. 1, No. 3, pp. 169–179, 2024, DOI: 10.70177/ijeep.v1i3.1092.

D. Deprizon, R. Refika, S. Sahlan, U. R. Nursyam, A. Lestari, and A. Widyanthi, “Peran Edukasi Digital Islami dalam Menyikapi Kesehatan Mental (Stres) Mahasiswa Program Studi Pendidikan Guru Madrasah Ibtidaiyah (PGMI),” kependidikan MI, Vol. 02, pp. 127–140, 2024, [Online]. Available: https://doi.org/10.46963/mpgmi/v10i1.1668

S. Musabiq and I. Karimah, “Gambaran Stress dan Dampaknya pada Mahasiswa,” Insight SCI. J. Psychol., Vol. 20, No. 2, p. 74, 2018, DOI: 10.26486/psikologi.v20i2.240.

T. Chen, “Investigating the Mental Health of University Students during the COVID-19 Pandemic in a UK University: A Machine Learning Approach using Feature Permutation Importance,” Brain Informatics, Vol. 10, No. 1, 2023, DOI: 10.1186/s40708-023-00205-8.

Lina Eta Safitri and Ovi Soviya, “Kesehatan Mental dan Pendidikan Agama Islam Mahasiswa di STIKES Griya Husada Sumbawa,” J. Anestesi, Vol. 3, No. 1, pp. 45–50, 2024, DOI: 10.59680/anestesi.v3i1.1584.

Anis Sintya and Ike Utia Ningsih, “Peran Sholat dalam mengurangi Stres dan Kecemasan,” J. Psychol. Soc. SCI., Vol. 3, No. 2, pp. 62–70, 2025, DOI: 10.61994/jpss.v3i2.1059.

O. Iparraguirre-, “Machine Learning Models to Classify and Predict Depression in College Students,” Vol. 18, No. 14, pp. 148–163, 2024, DOI:10.3991/ijim.v18i14.48669.

J. Qiu, L. Cheng, and J. Huang, “Charting the Landscape of Artificial Intelligence Ethics: A Bibliometric Analysis,” Int. J. Digit. Law Gov., Vol. 2, No. 1, pp. 135–167, 2025, DOI: 10.1515/ijdlg-2025-0007.

C. El Morr, M. Jammal, I. Bou-Hamad, S. Hijazi, D. Ayna, M. Romani, and R. Hoteit, “Predictive Machine Learning Models for Assessing Lebanese University Students’ Depression, Anxiety, and Stress During COVID-19,” J. Prim. Care Community Heal., Vol. 15, 2024, DOI: 10.1177/21501319241235588.

N. Nurdiansyah, F. S. Febriyan, Z. Gesit, and D. Amanta, “Mental Health Analysis to Prevent Mental Disorders in Students using the K-Nearest Neighbor ( K-NN ) Algorithm and Random Forest Algorithm Analisis Kesehatan Mental untuk mencegah Gangguan Mental pada Mahasiswa menggunakan Algoritma K-Nearest Neighbor ( K,” MALCOM Indones. J. Mach. Learn. Comput. SCI., Vol. 5, No. January, pp. 1–9, 2025, DOI: 10.57152/malcom.v5i1.1537.

L. Umbari Putri, R. Yesputra, S. Y. Prayogi, N. Marpaung, and J. Hutahean, “Stacking Ensemble Model Machine Learning Deteksi Dini Risiko Kesehatan Mental di Lingkungan Pendidikan,” Vol. 4307, No. August, pp. 4256–4266, 2024,DOI:10.54314/jssr.v8i3.4147.

M. Rahma, M. Fikry, and Y. Afrillia, “Prediksi Kesehatan Mental Remaja berdasarkan Faktor Lingkungan Sekolah menggunakan Machine Learning,” J. Inform. J. Pengemb. IT, Vol. 10, No. 2, pp. 382–390, 2025, DOI: 10.30591/jpit.v10i2.8556.

E. M. Arias, J. Parraga-Alava, and D. Z. Montenegro, “Stress Detection among Higher Education Students: A Comprehensive Systematic Review of Machine Learning Approaches,” Int. Conf. eDemocracy eGovernment, ICEDEG, No. 2024, pp. 1–8, 2024, DOI: 10.1109/ICEDEG61611.2024.10702055.

D. Anggreani, Hamdani, and Nurmisba, “Grid Search Hyperparameter Analysis in Optimizing the Decision Tree Method for Diabetes Prediction,” Indones. J. Data SCI., Vol. 5, No. 3, pp. 190–197, 2024, DOI: 10.56705/ijodas.v5i3.190.

M. Salmi, D. Atif, D. Oliva, A. Abraham, and S. Ventura, Handling Imbalanced Medical Datasets: Review of a Decade of Research, Vol. 57, No. 10. Springer Netherlands, 2024. DOI: 10.1007/s10462-024-10884-2.




DOI: https://doi.org/10.32520/stmsi.v15i1.5732

Article Metrics

Abstract view : 7 times
PDF - 1 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.