Novel Genre Classification based on Synopsis using the Random Forest Algorithm
Abstract
Keywords
Full Text:
PDFReferences
A. Sethy, A. K. Rout, A. Uriti, and S. P. Yalla, “Revue d ’ Intelligence Artificielle A Comprehensive Machine Learning Framework for Automated Book Genre Classifier,” Vol. 37, No. 3, pp. 745–751, 2023.
S. Nouas, L. Oukid, and F. Boumahdi, “ur l P re,” Data SCI. Manag., 2025, DOI: 10.1016/j.dsm.2025.03.001.
C. Kaope and Y. Pristyanto, “The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance,” Vol. 22, No. 2, pp. 227–238, 2023, DOI: 10.30812/matrik.v22i2.2515.
L. Dube and T. Verster, “Enhancing Classification Performance in Imbalanced Datasets: A Comparative Analysis of Machine Learning Models,” Data SCI. Financ. Econ., Vol. 3, No. 4, pp. 354–379, 2023, DOI: 10.3934/dsfe.2023021.
N. Jalal, A. Mehmood, G. Sang, and I. Ashraf, “A Novel Improved Random Forest for Text Classification using Feature Ranking and Optimal Number of Trees,” J. King Saud Univ. - Comput. Inf. SCI., Vol. 34, No. 6, pp. 2733–2742, 2022, DOI: 10.1016/j.jksuci.2022.03.012.
A. Agung, A. Witaradiani, I. G. Arta, and P. Praba, “Klasifikasi Genre Buku berdasarkan Sinopsis menggunakan Naïve Bayes dan Logistic Regression,” Vol. 3, pp. 835–844, 2025.
N. D. Primadya, A. Nugraha, and S. Y. Fahrezi, “Optimizing Imbalanced Data Classification : Under Sampling Algorithm Strategy with Classification Combination,” No. April 2024, pp. 277–288.
M. R. F. Rahmatullah, P. N. Andono, and M. A. Soeleman, “Improving Random Forest Performance for Sentiment Analysis on Unbalanced Data using SMOTE and BoW Integration : PLN Mobile Application Case Study,” Vol. 12, No. 1, pp. 1–10, 2025, DOI: 10.15294/sji.v12i1.19295.
A. Nawaz, A. Ahmad, and S. S. Khan, “Beyond Rebalancing: Benchmarking Binary Classifiers Under Class Imbalance Without Rebalancing Techniques,” 2025, [Online]. Available: http://arxiv.org/abs/2509.07605
S. Wang, Y. Dai, J. Shen, and J. Xuan, “Research on Expansion and Classification of Imbalanced Data based on SMOTE Algorithm,” SCI. Rep., Vol. 11, No. 1, pp. 1–11, 2021, DOI: 10.1038/s41598-021-03430-5.
M. Altalhan, A. Algarni, and M. Turki-Hadj Alouane, “Imbalanced Data Problem in Machine Learning: A Review,” IEEE Access, Vol. 13, pp. 13686–13699, 2025, DOI: 10.1109/ACCESS.2025.3531662.
A. S. More and D. P. Rana, “An Experimental Assessment of Random Forest Classification Performance Improvisation with Sampling and Stage Wise Success Rate Calculation,” Procedia Comput. SCI., Vol. 167, No. Iccids 2019, pp. 1711–1721, 2020, DOI: 10.1016/j.procs.2020.03.381.
T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Inf., Vol. 14, No. 1, 2023, DOI: 10.3390/info14010054.
W. Chen, K. Yang, Z. Yu, Y. Shi, and C. L. P. Chen, A Survey on Imbalanced Learning: Latest Research, Applications and Future Directions, Vol. 57, No. 6. 2024. DOI: 10.1007/s10462-024-10759-6.
D. Siswara, A. M. Soleh, and A. Hamim Wigena, “Classification Modeling with RNN-based, Random Forest, and XGBoost for Imbalanced Data: A Case of Early Crash Detection in ASEAN-5 Stock Markets,” Sci. J. Informatics, Vol. 11, No. 3, pp. 569–582, 2024, DOI: 10.15294/sji.v11i3.4067.
M. Imani, A. Beikmohammadi, and H. R. Arabnia, “Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS under Varying Imbalance Levels,” Technologies, Vol. 13, No. 3, pp. 1–40, 2025, DOI: 10.3390/technologies13030088
DOI: https://doi.org/10.32520/stmsi.v15i1.5815
Article Metrics
Abstract view : 8 timesPDF - 0 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







