Comparison of Classification Algorithms toward Sentiment Analysis on Claim of Old Age Guaranteed

Ahmad Al Kaafi, Hilda Rachmi, Suparni Suparni

Abstract


The pros and cons of the Old Age Security (JHT) claim rules contained in the Minister of Manpower Regulation No. 2 of 2022 are unavoidable in Indonesia, especially on Twitter social media. Of course, this is something that deserves to be analyzed as government policy makers so as not to make a wrong move, one of which is using sentiment analysis techniques. The stages of the research carried out include data collection, pre-processing, the model used, experimentation and model assessment, as well as validation and evaluation of results. The researcher crawled 1000 Indonesian-language tweets on the pros and cons of claims related to Old Age Security using the R programming language and carried out the Text Cleaning Process. In the next stage, pre-processing is carried out using Case Folding, Stemming, Tokenizing and Stopword Removal. This research resulted in the sentiments of the Indonesian people being very happy with the president's statement asking for the regulation of the Minister of Manpower No. 2 of 2022 to be revised, then tested using 3 classification algorithms and the application of Particle Swarm Optimization feature selection. The results of the sentiment testing of the JHT benefit claim analysis obtained the highest value on the Support Vector Machine algorithm with the addition of Particle Swarm Optimization, namely the accuracy value of 82.92%, precision of 84.53%, recall of 80.90% and AUC value of 0.892..

Keywords: Support Vector Machine, Sentiment Analysis, Old Age Guaranteed

sar 0.892

Full Text:

PDF

References


Skola, “BPJS Ketenagakerjaan: Sejarah Singkat, Jenis, Visi dan Misi Halaman all - Kompas.com.” [Online]. Available: https://www.kompas.com/skola/read/2020/01/15/160000469/bpjs-ketenagakerjaan--sejarah-singkat-jenis-visi-dan-misi?page=all. [Accessed: 20-Feb-2022].

Badan Pusat Statistik, “Hasil Sensus Penduduk 2020,” 2021.

A. Kristianus, “70,7% Penduduk Indonesia Usia Produktif,” 2021. [Online]. Available: https://investor.id/business/234726/707-penduduk-indonesia-usia-produktif. [Accessed: 21-Feb-2022].

S. Indrayani, “Kementerian Komunikasi dan Informatika,” 2021. [Online]. Available: https://www.kominfo.go.id/content/detail/33004/angkatan-kerja-produktif-melimpah/0/artikel. [Accessed: 21-Feb-2022].

“Undang-Undang Republik Indonesia Nomor 13 Tahun 2003 Tentang Ketenagakerjaan.” [Online]. Available: https://jdih.kemenkeu.go.id/fulltext/2003/13TAHUN2003UU.htm. [Accessed: 21-Oct-2021].

I. Lestari and H. Hirawati, “Analisis Sistem Klaim Jaminan Hari Tua (Jht) Pada Badan Penyelenggara Jaminan Sosial (BPJS) Ketenagakerjaan Cabang Cilacap,” vol. 4, no. 1, pp. 74–79, 2015.

Undang-Undang Republik Indonesia Nomor 24 Tahun 2011 Tentang Badan Penyelenggara Jaminan Sosial, no. November. Indonesia: Kementerian Sekretariat Negara Republik Indonesia, 2011, pp. 1–68.

J. Abdullah, “Bentuk-Bentuk Jaminan Sosial Dan Manfaatnya Bagi Tenaga Kerja Dalam Hukum Ketenagakerjaan Indonesia,” YUDISIA J. Pemikir. Huk. dan Huk. Islam, vol. 9, no. 1, pp. 121–135, 2018.

A. Karnadi, “Jumlah Klaim JHT BPJS Ketenagakerjaan Naik 17,34% pada 2021,” 2022. [Online]. Available: https://dataindonesia.id/bursa-keuangan/detail/jumlah-klaim-jht-bpjs-ketenagakerjaan-naik-1734-pada-2021. [Accessed: 20-Feb-2022].

BPJS Ketenagakerjaan, “Laporan Keuangan dan Laporan Pengelolaan Program Tahun 2020,” 2021.

Menteri Ketenagakerjaan Republik Indonesia, Peraturan Menteri Ketenagakerjaan Republik Indonesia Nomor 2 Tahun 2022 Tentang Tata Cara Dan Persyaratan Pembayaran Manfaat Jaminan Hari Tua. Indonesia: Kementerian Hukum Dan Hak Asasi Manusia Republik Indonesia, 2022, pp. 1–9.

N. Putri and M. Abiyyu, “Masalah Penetapan Manfaat Jaminan Hari Tua (Jht) Setelah Terbitnya Peraturan Menteri Ketenagakerjaan Nomor 2 Tahun 2022,” Rewang Rencang J. Huk. Lex Gen., vol. 3, no. 5, pp. 395–411, 2022.

“BPJS Ketenagakerjaan.” [Online]. Available: https://www.bpjsketenagakerjaan.go.id/berita/27943/Polemik-Aturan-Baru-JHT,-Begini-Penjelasan-BPJS-Ketenagakerjaan. [Accessed: 18-Feb-2022].

H. Patel, “What Happen in an Internet Minute - Bond High Plus,” 2021. [Online]. Available: https://www.bondhighplus.com/2021/04/14/what-happen-in-an-internet-minute. [Accessed: 20-Feb-2022].

H. Rachmi, S. Suparni, and A. Al Kaafi, “Analisis Sentimen Sistem Ganjil Genap Kota Bogor,” J. ELTIKOM, vol. 5, no. 2, pp. 92–99, 2021.

M. Nurmalasari, N. Anggita Temesvari, S. Ni, and matul Maula, “Analisis Sentimen terhadap Opini Masyarakat dalam Penggunaan Mobile-JKN untuk Pelayanan BPJS Kesehatan Tahun 2019,” Heal. Inf. Manag. J. ISSN, vol. 8, no. 1, pp. 2655–9129, 2020.

V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020.

B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021.

P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 231–237, 2021.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021.




DOI: https://doi.org/10.32520/stmsi.v12i1.2221

Article Metrics

Abstract view : 629 times
PDF - 145 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.