Naïve Bayes Algorithm for Sentiment Analysis of Blibli.com Review on Google Play Store

Siti Nur Fadhilah, Fandy Setyo Utomo

Abstract


Currently, there are approximately 354 million active mobile phones in Indonesia, placing the country fourth globally in terms of the highest number of mobile phone users. E-Commerce, as a form of online transaction, enables the digital exchange of goods and services to meet daily needs. This research aims to implement sentiment analysis using the Naive Bayes classification algorithm as a method to gather user opinions. Thus, the study not only provides insights into customer satisfaction with Blibli.com but also serves as a basis for potential improvements in services or feature development to enhance the online shopping experience. Overall, the Naive Bayes algorithm successfully achieved an accuracy of around 84%, demonstrating its proficiency in categorizing sentiment in reviews. When focusing on negative data, the Naive Bayes algorithm exhibited a precision of approximately 79%, recall of around 95%, and an f1-score of about 86%, indicating its success in identifying and classifying negative reviews with high precision and sensitivity. On the positive side, the Naive Bayes algorithm achieved a precision of about 91%, recall of around 83%, and an f1-score of about 87%.

Full Text:

PDF

References


S. Caroline, “Ada 354 Juta Ponsel Aktif di Indonesia, Terbanyak Nomor Empat Dunia,” https://tekno.kompas.com. Accessed: Jan. 16, 2024. [Online]. Available: https://tekno.kompas.com/read/2023/10/19/16450037/ada-354-juta-ponsel-aktif-di-indonesia-terbanyak-nomor-empat-dunia#google_vignette

R. Apriani et al., “Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,” J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019, [Online]. Available: https://rekayasa.nusaputra.ac.id/article/view/86

A. J. Putri, A. S. Syafira, M. E. Purbaya, and D. Purnomo, “Analisis Sentimen E-Commerce Lazada pada Jejaring Sosial Twitter Menggunakan Algoritma Support Vector Machine,” J. TRINISTIK J. Tek. Ind. Bisnis Digit. dan Tek. Logistik, vol. 1, no. 1, pp. 16–21, 2022, doi: 10.20895/trinistik.v1i1.447.

F. A. Khatami, B. Irawan, and C. Setianingsih, “Analisis Sentimen Terhadap Review Aplikasi Layanan E-Commerce Menggunakan Metode Convolutional Neural Network,” e-Proceeding Eng., vol. 7, no. 2, pp. 4559–4566, 2020.

A. Kurniadi, “Penerapan konsep e-bisnis pada perusahaan blibli.com,” pp. 1–6, 2019.

A. Aryatama, “Analisis E-Commerce Blibli,” J. Fak. Komput., pp. 1–6, 2021.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.

I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 296, 2022, doi: 10.30865/json.v4i2.5381.

D. S. Arum, S. Butsianto, R. Astuti, and U. Pelita Bangsa, “Analisis Sentimen Masyarakat Indonesia Terhadap Sea Games 2023 Di Twitter Dengan Metode Naïve Bayes,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 7, no. 3, pp. 728–738, 2023, doi: 10.52362/jisamar.v7i3.1150.

Riswandi, “Transaksi On-Line (E-Commerce) : Peluang dan Tantangan Dalam Perspektif Ekonomi Islam,” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 13, no. April, pp. 15–38, 2019.

Biro Pusat Statistik, “eCommerce 2022/2023 01,” pp. 1–144, 2023, [Online]. Available: https://www.bps.go.id/

I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.

K. Melina Elistiana, B. Adhi Kusuma, P. Subarkah, and H. Akbar Awal Rozaq, “Improvement of Naive Bayes Algorithm in Sentiment Analysis of Shopee Application Reviews on Google Play Store,” vol. 4, no. 6, pp. 1431–1436, 2023, [Online]. Available: https://doi.org/10.52436/1.jutif.2023.4.6.1486

W. Khofifah, D. N. Rahayu, and A. M. Yusuf, “Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps,” J. Interkom J. Publ. Ilm. Bid. Teknol. Inf. dan Komun., vol. 16, no. 4, pp. 28–38, 2022, doi: 10.35969/interkom.v16i4.192.

N. Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 183–188, 2020, doi: 10.31294/p.v22i2.8808.

D. D. A. Yani, H. S. Pratiwi, and H. Muhardi, “Implementasi Web Scraping untuk Pengambilan Data pada Situs Marketplace,” J. Sist. dan Teknol. Inf., vol. 7, no. 4, p. 257, 2019, doi: 10.26418/justin.v7i4.30930.

H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. dan Inform., vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.




DOI: https://doi.org/10.32520/stmsi.v13i2.3887

Article Metrics

Abstract view : 159 times
PDF - 35 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
https://nrais.dgda.gov.bd/public/jepang/https://learning.modernland.co.id/api/toto/http://himatikauny.org/wp-includes/mahjong-ways-3/https://www.jst.hvu.edu.vn/akun-pro-kamboja/https://section.iaesonline.com/akun-pro-kamboja/https://journals.uol.edu.pk/sugar-rush/http://mysimpeg.gowakab.go.id/mysimpeg/aset/https://jurnal.jsa.ikippgriptk.ac.id/plugins/https://ppid.cimahikota.go.id/assets/demo/https://journals.zetech.ac.ke/scatter-hitam/https://silasa.sarolangunkab.go.id/swal/https://sipirus.sukabumikab.go.id/storage/uploads/-/sthai/https://sipirus.sukabumikab.go.id/storage/uploads/-/stoto/https://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://waper.serdangbedagaikab.go.id/storage/sgacor/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-dana/https://siipbang.katingankab.go.id/storage_old/maxwin/https://waper.serdangbedagaikab.go.id/public/img/cover/10k/