Chili Leaf Health Classification using Xception Pretrained Model

Yestika Dian Wulandari, Lulu Chaerani Munggaran, Foni Agus Setiawan, Ika Atman Satya

Abstract


As one of the high-demand horticultural crops, chili peppers have a significant impact on the economy of Indonesia. However, despite the growing demand and interest in chili peppers, their production often faces disruptions due to crop failures. One of the leading causes of such failures is pests and diseases. Among all parts of the chili plant, chili leaves are the most susceptible to damage. Distinguishing between healthy and unhealthy chili leaves can serve as an early detection step for chili diseases and preventive measures to contain their spread. Convolutional Neural Network (CNN) are effective algorithms for image classification. The development of CNN has led to the use of models previously trained on large datasets to accurately classify relatively small datasets. One such pretrained model known for its exceptional classification capabilities is Xception. By utilizing the pretrained Xception model trained on the ImageNet dataset for the classification of healthy and unhealthy chili leaf images, our model achieved an accuracy of 91% on a dataset containing 2136 images. Furthermore, the model achieved a 100% success rate by correctly predicting all 10 out of 10 given images.

Full Text:

PDF

References


E. Santika, “Konsumsi Cabai Besar dan Rawit 2022 Sudah Melampaui Capaian Sebelum Pandemi,” Jun. 2023. .

B. Soemardiono, Penyakit Tanaman Cabai. Denpasar: Fakultas Pertanian Universitas Udayana, 2016.

Y. Sambrani, Rajashekarappa, and S. Bhairannawar, “Chili Disease Detection and Classification using Various Machine Learning Techniques,” 2023, doi: 10.1109/ICAISC58445.2023.10199988.

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional Neural Networks: An Overview and Application in Radiology,” Insights into Imaging, vol. 9, no. 4. 2018, doi: 10.1007/s13244-018-0639-9.

D. Hendrycks, K. Lee, and M. Mazeika, “Using Pre-Training Can Improve Model Robustness and Uncertainty.”

N. Maray, A. H. Ngu, J. Ni, M. Debnath, and L. Wang, “Transfer Learning on Small Datasets for Improved Fall Detection,” Sensors 2023, Vol. 23, Page 1105, vol. 23, no. 3, p. 1105, Jan. 2023, doi: 10.3390/S23031105.

E. Waisberg et al., “Transfer learning as an AI-based Solution to Address Limited Datasets in Space Medicine,” Life Sci. Sp. Res., vol. 36, pp. 36–38, Feb. 2023, doi: 10.1016/J.LSSR.2022.12.002.

K. Zhang, Q. Wu, A. Liu, and X. Meng, “Can Deep Learning Identify Tomato Leaf Disease?,” 2018, doi: 10.1155/2018/6710865.

M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ScienceDirect ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network,” Procedia Comput. Sci., vol. 167, pp. 293–301, 2020, doi: 10.1016/j.procs.2020.03.225.

S. S. Gaikwad, M. Hangarge, Shivanand, and S. Rumma, “Fungi Affected Fruit Leaf Disease Classification using Deep CNN Architecture,” Artic. Int. J. Inf. Technol., 2022, doi: 10.1007/s41870-022-00860-w.

A. M. N, “Apple and Grape Leaf Disease Classification using MLP and CNN,” doi: 10.1109/ICAECA52838.2021.9675567.

M.A. Hasan, et al., “Identification of Grape Leaf Diseases using Convolutional Neural Network,” J. Phys. Conf. Ser., vol. 1641, p. 12007, 2020, doi: 10.1088/1742-6596/1641/1/012007.

L. Falaschetti, L. Manoni, D. Di Leo, D. Pau, V. Tomaselli, and C. Turchetti, “A CNN-based Image Detector for Plant Leaf Diseases Classification,” doi: 10.17605/OSF.IO/UCM8D.

S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of Plant-Leaf Diseases using CNN and Transfer-Learning Approach,” Electron., vol. 10, no. 12, 2021, doi: 10.3390/electronics10121388.

G. Shrestha, Deepsikha, M. Das, and N. Dey, “Plant Disease Detection using CNN,” Proc. 2020 IEEE Appl. Signal Process. Conf. ASPCON 2020, vol. 12, no. 12, pp. 109–113, 2020, doi: 10.1109/ASPCON49795.2020.9276722.

Y. Zhong, M. Tong, P. Singh, M. Ramchandani, Y. Kumar Rathore, and R. Ram Janghel, “Rice Leaf Disease Classification Using CNN,” doi: 10.1088/1755-1315/1032/1/012017.

R. Rosalina and A. Wijaya, “Pendeteksian Penyakit pada Daun Cabai dengan menggunakan Metode Deep Learning,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, 2020, doi: 10.28932/jutisi.v6i3.2857.

A. Tsany and R. Dzaky, “Deteksi Penyakit Tanaman Cabai menggunakan Metode Convolutional Neural Network,” e-Proceeding Eng., vol. 8, no. 2, 2021.

R. A. Saputra, F. D. Adhinata, N. G. Ramadhan, and R. A. Charisma, “A Model Convolutional Neural Network for Early Detection of Chili Plant Diseases in Small Datasets,” in Lecture Notes in Electrical Engineering, vol. 1008, Springer Science and Business Media Deutschland GmbH, 2023, pp. 131–143.

K. R. Kanaparthi and S. Sudhakar Ilango, “A Survey on Training Issues in Chili Leaf Diseases Identification using Deep Learning Techniques,” Procedia Comput. Sci., vol. 218, 2023, doi: 10.1016/j.procs.2023.01.188.

Roboflow Universe, “Dataset Computer Vision Project”, May 2023, [Online]. Available: https://universe.roboflow.com/elfhiya08gmailcom/dataset-ufyb0.

V. Thambawita, I. Strümke, S. A. Hicks, P. Halvorsen, S. Parasa, and M. A. Riegler, “Impact of Image Resolution On Deep Learning Performance in Endoscopy Image Classification: An Experimental Study using a Large Dataset of Endoscopic Images,” Diagnostics, vol. 11, no. 12, 2021, doi: 10.3390/diagnostics11122183.

C. F. Sabottke and B. M. Spieler, “The Effect of Image Resolution on Deep Learning in Radiography,” Radiol. Artif. Intell., vol. 2, no. 1, 2020, doi: 10.1148/ryai.2019190015.

F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, doi: 10.1109/CVPR.2017.195.




DOI: https://doi.org/10.32520/stmsi.v13i3.3943

Article Metrics

Abstract view : 70 times
PDF - 17 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.