Analysis To Predict The Quality Of Toddler Growth By Implementing The KNN And Naïve Bayes Methods

Elfira Yolanda Reza, Tri Wahyu Widyaningsih

Abstract


In particular, stunting and being under the Red Line (BGM) are significant issues for society and the healthcare system. This research utilizes machine learning, particularly the K-Nearest Neighbor (KNN) and Naïve Bayes algorithms, for classifying the health of children experiencing stunting or BGM. The training data used comes from the Indonesian Posyandu website, serving as the foundation for classifying new data. This research not only identifies patterns in the data through KNN but also compares the prediction results between KNN and Naïve Bayes in assessing the probability of stunting or BGM in children. This issue reflects nutritional deficiencies and has the potential to cause developmental delays and long-term health impacts. This approach allows for the comparison of predictive outcomes, enhancing the accuracy of children's health assessments. By using the RapidMiner application, the accuracy result for KNN is 70.62% and for Naïve Bayes is 99.47%, providing a deeper understanding of the effectiveness of each algorithm in addressing child health challenges. The aim of this research is to classify new toddler data using the KNN and Naïve Bayes methods, implemented in the form of a Visual Basic application. It is hoped that this will help monitor children's health more effectively and be more easily accessible to interested parties.

Full Text:

PDF

References


E. Haerani, F. Syafria, and L. Oktavia, “Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation,” vol. 4, no. 3, pp. 578–586, 2023, doi: 10.47065/josyc.v4i3.3414.

Harliana and D. Anggraini, “Penerapan Algoritma Naïve Bayes Pada Klasifikasi Status Gizi Balita di Posyandu Desa Kalitengah (Harliana, Dewi Anggraini),” FAHMA - J. Inform. Komputer, Bisnis dan Manaj., vol. 21, no. 2, pp. 38–45, 2023.

U. Salamah, D. Rahayu, and P. Studi Kebidanan, “Pemberian Makan Bayi dan Anak (PMBA) dengan Kejadian Stunting,” SEHATMAS (Jurnal Ilm. Kesehat. Masyarakat) , vol. 2, no. 3, pp. 651–660, 2023, doi: 10.55123/sehatmas.v2i3.2054.

M. Y. Titimeidara and W. Hadikurniawati, “Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita,” J. Ilm. Inform., vol. 9, no. 01, pp. 54–59, 2021, doi: 10.33884/jif.v9i01.3741.

P. Klien, H. Di, R. Sakit, and J. Provinsi, “Jurnal pengabdian,” J. Pengabdi., vol. 2, no. 2, pp. 29–31, 2020, [Online]. Available: file:///C:/Users/user/Downloads/2093-169-10915-1-10-20220818.pdf

R. R. R. Arisandi, B. Warsito, and A. R. Hakim, “Aplikasi Naïve Bayes Classifier (NBC) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation,” J. Gaussian, vol. 11, no. 1, pp. 130–139, 2022, doi: 10.14710/j.gauss.v11i1.33991.

D. Meta Amalya and T. W. Widyaningsih, “Implementation of Naive Bayes for Classification and Potentially MSMEs Analysis,” MATEC Web Conf., vol. 218, pp. 1–8, 2018, doi: 10.1051/matecconf/201821802006.

S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 49, 2022, doi: 10.30865/mib.v6i1.3312.

E. Rahayu, N. Irawati, and R. Ananda, “ Klasifikasi Kelayakan Warga Penerima BPNT dengan Algoritma k-Nearest Neighbor Classification of Eligibility for BPNT Recipients using the k-Nearest Neighbor Algorithm,” SISTEMASI: Jurnal Sistem Informasi, Januari, vol. 13, no. 1, pp. 2540–9719, 2024, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

H. P. Herlambang, F. Saputra, M. H. Prasetiyo, D. Puspitasari, and D. Nurlaela, “Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree, Naive Bayes dan K-Nearest Neighbor,” J. Insa. - J. Inf. Syst. Manag. Innov., vol. 3, no. 1, pp. 21–28, 2023, doi: 10.31294/jinsan.v3i1.2097.

F. Y. Rahman, I. I. Purnomo, and N. Hijriana, “Penerapan Algoritma Data Mining Untuk Klasifikasi Kualitas Air,” Technol. J. Ilm., vol. 13, no. 3, p. 228, 2022, doi: 10.31602/tji.v13i3.7070.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

N. A. Sholikhin and S. Atmojo, “Aplikasi Web Untuk Klasifikasi Stunting Pada Balita Dengan Menggunakan Metode K-Nearest Neighbours (Studi Kasus Posyandu Jawu Kidul),” J. Syst. Eng. Technol. Innov., vol. 1, no. 02, pp. 44–47, 2022, doi: 10.38156/jisti.v1i02.23.

M. T. Hidayat and R. H. Laluma, “Penerapan Metode K-Nearest Neighbor Untuk Klasifikasi Gizi Balita,” Infotronik J. Teknol. Inf. dan Elektron., vol. 7, no. 2, p. 64, 2022, doi: 10.32897/infotronik.2022.7.2.1702.

N. P. G. Naraswati, R. Nooraeni, D. C. Rosmilda, D. Desinta, F. Khairi, and R. Damaiyanti, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” Sistemasi, vol. 10, no. 1, p. 222, 2021, doi: 10.32520/stmsi.v10i1.1179.

V. Herliansyah, R. Latuconsina, A. Dinimaharawati, and U. Telkom, “Prediksi Stunting Pada Balita Dengan Menggunakan Algoritma Klasifikasi Naïve Bayes Stunting Prediction In Children Using Naïve Bayes Classification,” vol. 8, no. 5, pp. 6642–6649, 2021.

D. Gunawan and V. N. Andika, “Implementasi Teorema Bayes Pada Sistem Informasi Posyandu Dalam Mendeteksi Stunting Pada Balita,” J. Sist. Komput. dan Inform., vol. 4, no. 4, p. 692, 2023, doi: 10.30865/json.v4i4.6146.

E. Fitriani, “Perbandingan Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan,” Sistemasi, vol. 9, no. 1, p. 103, 2020, doi: 10.32520/stmsi.v9i1.596.

T. Muzadzi, “BAB 2 Landasan Teori,” עלון הנוטע, vol. 66, no. 1997, pp. 37–39, 2013.




DOI: https://doi.org/10.32520/stmsi.v13i5.4121

Article Metrics

Abstract view : 46 times
PDF - 13 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.