Clustering Medical Record Data on Diabetes Disease using Divisive Analysis Clustering Method

Mayang Safhira Tarigan, Muhammad Siddik Hasibuan

Abstract


Diabetes is a chronic disease characterized by high levels of sugar (glucose) in excess of normal limits, about 1.5 million deaths each year are directly attributed to diabetes. The purpose of this study is to obtain the optimal cluster analysis results on grouping medical record data on diabetes and obtain the silhouette coefficient value of the optimal cluster analysis results on grouping medical record data on diabetes at TK-II Putri Hijau Kesdam I / B Hospital, Medan-North Sumatra by using the divisive analysis algorithm and determining the variables that cause the patient to develop diabetes. The results showed that the optimal cluster using the divisive analysis algorithm was 2 clusters with a value of 0.468582 which stated that the cluster structure formed in this grouping was the right cluster. And for variables that cause patients to develop diabetes, namely age (X2) and blood sugar level (X8). it is because these two variables have the highest average value among the two clusters and all these variables.

Full Text:

PDF

References


A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.

A. Simanjorang, Megawati, and Agusdiana, “Analisis Pengaruh Kualitas Pelayanan Kesehatan Terhadap Kepuasan Pasien Ruang Penyakit Dalam di RSUD Dr. Fauziah Bireuen,” vol. 2, no. 2, pp. 116–130, 2019.

M. A. Wiratama and W. M. Pradnya, “Optimasi Algoritma Data Mining Menggunakan Backward Elimination untuk Klasifikasi Penyakit Diabetes,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 1, p. 1, 2022, doi: 10.23887/janapati.v11i1.45282.

Y. Yosiana Nabuasa, “Analisis Dan Perancangan Sistem Informasi Rekam Medis Sebagai Sarana Pelayanan Kesehatan Pada Puskesmas Oesapa Kota Kupang,” J. Sist. Inf., vol. 2, no. 1, pp. 40–46, 2021.

M. Rosadi, D. Aulia Nurhasanah, and M. Siddik Hasibuan, “Clustering Panjang Ruas Jalan di BBPJN Sumut Menggunakan Algoritma K-Means,” J. Comput. Sci. Informatics Eng., vol. 02, no. 1, pp. 29–38, 2023, doi: 10.55537/cosie.v2i1.567.

I. Nur and L. Fitriana, “Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Keluarga Sehat Menggunakan Metode Klaster Hirarki dan Non Hirarki,” J. Paradig. J. Multidisipliner Mhs. Pascasarj. Indones., vol. 2, no. 1, pp. 27–36, 2021.

N. Nirwana and M. Nor Hayati, “Categoric Data Grouping By Algorithm Quick Robust Clustering Using Links (QROCK)(Case Study: Status of Value Addrd Tax Payments at the Samarinda Ulu Primary Tax Office in 2018),” vol. 9, no. 1, 2021.

M. Z. Nasution and M. S. Hasibuan, “Pendekatan Initial Centroid Search untuk Meningkatkan Efisiensi Iterasi Klustering K-Means,” Techno.Com, vol. 19, no. 4, pp. 341–352, 2020, doi: 10.33633/tc.v19i4.3875.

S. N. Dwiyamti, K. Nisa, A. Sutrisno, N. Herawati, and P. Lampung, “Analisis Klaster untuk Data Kategorik Menggunakan Metode K-Modes ( Studi Kasus : Data Pasien COVID-19 di RSUD Dr . H . Abdul Moeloek,” J. Siger Mat., vol. 03, no. 02, pp. 61–68, 2022.

I. A. Kasoqi, M. N. Hayati, and R. Goejantoro, “Pengelompokan Desa Atau Kelurahan Di Kutai Kartanegara Menggunakan Algoritma Divisive Analysis,” J. Stat. Univ. Muhammadiyah Semarang, vol. 9, no. 2, p. 101, 2021, doi: 10.26714/jsunimus.9.2.2021.101-108.

M. R. Gunawan, “Perbandingan Pengelompokan Pada Wilayah Berdasarkan Tingkat Kerusakan Lingkungan Di Indonesia Menggunakan Analisis Klaster K- Means, Hirarki, Dan Ensemble,” vol. 33, no. 1, pp. 1–12, 2022.

A. W. Fuadah, F. N. Arifin, and O. Juwita, “Optimasi K-Klasterisasi Ketahanan Pangan Kabupaten Jember Menggunakan Metode Elbow,” INFORMAL Informatics J., vol. 6, no. 3, p. 136, 2021, doi: 10.19184/isj.v6i3.28363.

D. Rachmatin and K. Sawitri, “Perbandingan antara metode agglomeratif, metode divisif dan metode k-means dalam analisis klaster,” Semin. Nas. Mat. UNPAR, vol. 1, pp. 9–17, 2019.

M. I. Mubarok and A. Rusyiana, “Pemetaan Zona Resiko Penularan Covid-19 Di Sulawesi Selatan Menggunakan Plot Dendrogram Hierarchical Clustering,” Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 55–64, 2021, doi: 10.34123/semnasoffstat.v2020i1.441.

M. S. Hasibuan, H. Harahap, U. Pembangunan, P. Budi, U. Islam, and N. Sumatera, “Penerapan Metode Haar-Like Feature Dan Algoritma Adaboost Dalam Penentuan Klasifikasi Hama,” vol. 4307, no. 1, pp. 87–93, 2024.




DOI: https://doi.org/10.32520/stmsi.v13i4.4380

Article Metrics

Abstract view : 266 times
PDF - 89 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.