Performance Comparison of IoT Classification Models using Ensemble Stacking and Feature Importance

nabila putri setiawan, Adhitya Nugraha, Ardytha Luthfiarta, Yudha Mulyana

Abstract


Internet of Things (IoT) security is becoming a top priority as the number of connected devices increases online. This research utilizes the CIC IoT ATTACK 2023 dataset from the University of Brunswick, which consists of 46 million data on various types of attacks on IoT devices, such as DDoS, DoS, Brute Force, Spoofing, and Mirai attacks. To address the imbalance in the dataset, a random undersampling technique is applied to ensure the machine learning model is not biased towards the majority class. The ensemble learning approach was chosen due to its ability to combine the strengths of multiple algorithms, thus improving accuracy and stability in detecting complex IoT attacks. The algorithms used include gradient boosting, bagging, voting, and stacking. In particular, the stacking model, which combines the bagging classifier and gradient boosting, achieved the highest accuracy of 93%. Although the accuracy of the stacking model decreased to 92.4% after feature selection, the precision, recall, and F1-score remained high at 92.0. In addition, the computation time was also reduced from 2111.69 seconds to 1208.27 seconds. These findings indicate that ensemble learning approaches and feature selection techniques have great potential in improving IoT security, providing more reliable and efficient threat detection solutions.

Full Text:

PDF

References


Reference

D. Ratna Sari, “Analisis Keamanan Sistem Informasi dalam Era Internet of Things (IoT),” Technologia Journal: Jurnal Informatika, vol. 1, no. 2, pp. 3046–9163, 2024, doi: 10.62872/v2tffe44.

E. Saputro and D. Rosiyadi, “Bianglala Informatika Penerapan Metode Random Over-Under Sampling Pada Algoritma Klasifikasi Penentuan Penyakit Diabetes,” vol. 10, no. 1, p. 2022, [Online]. Available: https://archive.ics.uci.edu/ml/machine-learning-

E. Daniati and H. Utama, “ANALISIS SENTIMEN DENGAN PENDEKATAN ENSEMBLE LEARNING DAN WORD EMBEDDING PADA TWITTER,” 2023.

E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A. Ghorbani, “CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment,” Sensors, vol. 23, no. 13, Jul. 2023, doi: 10.3390/s23135941.

E. Ismanto, J. Al Amien, and V. Vitriani, “A Comparison of Enhanced Ensemble Learning Techniques for Internet of Things Network Attack Detection,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 23, no. 3, pp. 543–556, Jun. 2024, doi: 10.30812/matrik.v23i3.3885.

D. Setiawan, A. Nugraha, and A. Luthfiarta, “Komparasi Teknik Feature Selection Dalam Klasifikasi Serangan IoT Menggunakan Algoritma Decision Tree,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 1, p. 83, Jan. 2024, doi: 10.30865/mib.v8i1.6987.

N. Dwi Primadya, A. Nugraha, A. Luthfiarta, and Y. Fahrezi, “Optimasi Logistic Regression untuk Deteksi Serangan DoS pada Keamanan IoT”, doi: 10.30864/eksplora.v13i2.1065.

R. Amelia et al., “KOMPARASI TEKNIK UNDERSAMPLING DAN OVERSAMPLING PADA REGRESI LOGISTIK BINER DALAM MENDUGA FAKTOR DETERMINAN BERHENTI MEROKOK PENDUDUK LANJUT USIA,” 2021.

Y. Pristyanto, “PENERAPAN METODE ENSEMBLE UNTUK MENINGKATKAN KINERJA ALGORITME KLASIFIKASI PADA IMBALANCED DATASET,” 2019. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/User+Knowledge

B. Sunarko et al., “Edu Komputika Journal Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat Pencemaran Udara,” Edu Komputika, vol. 10, no. 1, 2023, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/edukom

Y. Zhang, J. Liu, and W. Shen, “A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications,” Sep. 01, 2022, MDPI. doi: 10.3390/app12178654.

M. Ibnu, U. Rosyidi, and N. Rochmawati, “Teknik Bagging Pada Algoritma Klasifikasi Decision Tree dan SVM Untuk Klasifikasi SMS Berbahasa Indonesia,” Journal of Informatics and Computer Science, vol. 05, 2023.

F. Churniansyah, D. Wahyu Utomo, and D. Redaksi, “Jurnal Nasional Teknologi dan Sistem Informasi Attribution-ShareAlike 4.0 International Some rights reserved Artikel Penelitian Teknik Bagging pada Ensemble Learning untuk Kategorisasi Produk E-Commerce Sejarah Artikel,” Pendrikan Kidul, Kec. Semarang Tengah, vol. 50131, no. 207, doi: 10.25077/TEKNOSI.v10i1.2024.92-80.

S. Joses, S. Quinevera, R. Mardianto, D. Yulvida, and A. Mazharuddin Shiddiqi, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Pendekatan Metode Ensemble Learning untuk Deteksi Serangan DDoS menggunakan Soft Voting Classifier,” 2024.

L. Maretva Cendani and A. Wibowo, “Perbandingan Metode Ensemble Learning pada Klasifikasi Penyakit Diabetes,” 2022.

M. Labib Mu’tashim et al., “Klasifikasi Ketepatan Lama Studi Mahasiswa Dengan Algoritma Random Forest Dan Gradient Boosting (Studi Kasus Fakultas Ilmu Komputer Universitas Pembangunan Nasional Veteran Jakarta),” 2023.

M. K. Suryadewiansyah, T. Endra, and E. Tju, “Jurnal Nasional Teknologi dan Sistem Informasi Naïve Bayes dan Confusion Matrix untuk Efisiensi Analisa Intrusion Detection System Alert”, doi: 10.25077/TEKNOSI.v8i2.2022.081-088.




DOI: https://doi.org/10.32520/stmsi.v13i6.4673

Article Metrics

Abstract view : 27 times
PDF - 5 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.