Applying Machine Learning to Predict Intercity Bus Ticket Prices During the Holiday Season

Rifandi Almanda, Tety Elida

Abstract


The construction of the Trans Java Toll Road has intensified competition in the intercity bus (AKAP) industry, prompting bus operators (PO) to formulate strategies to maximize revenue. During holiday and festive seasons, operators typically raise ticket prices based on competitor pricing. However, other critical factors are often overlooked, such as fleet maintenance costs, travel operational expenses (fuel, tolls, driver commissions, meal allowances, and incentives), as well as agent commissions and passenger meals, all of which tend to increase—sometimes drastically—especially when fuel prices rise. This study aims to analyze passenger behavior, route potential, conduct preventive maintenance planning, and evaluate the alignment between ticket pricing, contribution margin, and cost ratio using a machine learning approach with the Random Forest Regression algorithm. The machine learning model was developed using data on route masters, fleet details, travel costs, ticket prices, holidays, and transaction records of revenue and operational expenses. The model achieved an RMSE of 3%, R² score of 77%, MAPE of 9.56%, and accuracy of 90.44%. It was then implemented in a web-based interface using Flask and ASP.NET to compare actual ticket prices with predicted prices.

Keywords


Prediksi Tarif; Transportasi AKAP; Machine Learning; Analisis Random Forest

Full Text:

PDF

References


K. Talluri and G. Van Ryzin, “Revenue Management under a General Discrete Choice Model of Consumer Behavior,” Management Science, Vol. 50, No. 1, pp. 15–33, 2004.

T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many Trees in a Random Forest?,” in Machine Learning and Data Mining in Pattern Recognition: 8th International Conference, MLDM 2012, Berlin, Germany, July 13-20, 2012. Proceedings 8, Springer Berlin Heidelberg, 2012, pp. 154–168.

A. Y. Samudra, “Pendekatan Random Forest untuk Model Peramalan Harga Tembakau Rajangan di Kabupaten Temanggung,” Bachelor Thesis, Universitas Sanata Dharma, Yogyakarta, 2019.

M. J. Wulansari, “Analisis Faktor-faktor yang mempengaruhi Seseorang terkena Penyakit Diabetes Melitus menggunakan Regresi Random Forest (Studi Kasus: Data Diabetes di Virginia Amerika Serikat),” 2018.

N. Nur, F. Wajidi, S. Sulfayanti, and W. Wildayani, “Implementasi Algoritma Random Forest Regression untuk memprediksi Hasil Panen Padi di Desa Minanga,” Jurnal Komputer Terapan, Vol. 9, No. 1, pp. 58–64, 2023.

C. Haryanto, N. Rahaningsih, and F. M. Basysyar, “Komparasi Algoritma Machine Learning dalam memprediksi Harga Rumah,” JATI (Jurnal Mahasiswa Teknik Informatika), Vol. 7, No. 1, pp. 533–539, 2023.

S. Fachid and A. Triayudi, “Perbandingan Algoritma Regresi Linier dan Regresi Random Forest dalam memprediksi Kasus Positif Covid-19,” Jurnal Media Informatika Budidarma, Vol. 6, No. 1, pp. 68–73, 2022.

Y. A. Zebua et al., “Prediksi Penetapan Tarif Penerbangan menggunakan Auto-Ml dengan Algoritma Random Forest,” Jurnal Tekinkom (Teknik Informasi dan Komputer), Vol. 5, No. 1, pp. 115–122, 2022.

M. L. Suliztia, “Penerapan Analisis Random Forest pada Prototype Sistem Prediksi Harga Kamera Bekas menggunakan Flask,” 2020.

I. Reis, D. Baron, and S. Shahaf, “Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets,” The Astronomical Journal, Vol. 157, No. 1, pp. 1–12, 2018.

B. F. Darst, K. C. Malecki, and C. D. Engelman, “Using Recursive Feature Elimination in Random Forest to Account for Correlated Variables in High Dimensional Data,” BMC Genetics, Vol. 19, No. 1, pp. 1–6, 2018.

C. Luong and N. Dokuchaev, “Forecasting of Realised Volatility with the Random Forests Algorithm,” Journal of Risk and Financial Management, Vol. 11, No. 4, pp. 1–15, 2018, doi: 10.3390/jrfm11040061.

B. M. Pavlyshenko, “Machine-Learning Models for Sales Time Series Forecasting,” Data, Vol. 4, No. 1, p. 15, 2019, doi: 10.3390/data4010015.

R. R. Abadi, I. Nursyamsi, and A. R. Syamsuddin, “Effect of Customer Value and Experiential Marketing to Customer Loyalty with Customer Satisfaction as Intervening Variable (Case Study on Gojek Makassar Consumers),” The Asian Journal of Technology Management, Vol. 13, No. 1, pp. 82–97, 2020.

M. Huang and R. T. Rust, “Artificial Intelligence in Service,” Journal of Service Research, pp. 2–6, 2018, doi: 10.1177/1094670517752459.

S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, New Jersey: CreateSpace Independent Publishing Platform, 2010.




DOI: https://doi.org/10.32520/stmsi.v14i5.5350

Article Metrics

Abstract view : 6 times
PDF - 3 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.