Prediction of Unpaid Student Fees at Muhammadiyah Ahmad Dahlan University Cirebon using the Random Forest Algorithm

Suherman Herman, Domy Kristomo

Abstract


This study aims to develop a predictive model for student fee payment arrears at Universitas Muhammadiyah Ahmad Dahlan Cirebon using the Random Forest algorithm. The dataset was obtained from the Academic Information System and consisted of 490 student records from four cohorts (2018–2021), which were divided into 80% training data and 20% testing data. The data processing stages included data cleaning, transformation, and feature selection using Recursive Feature Elimination (RFE). The model was optimized using GridSearchCV to obtain the best configuration. The evaluation results indicate strong performance, with an AUC of 0.980, accuracy of 88.8%, precision of 90.4%, recall of 88.8%, and an F1-score of 0.875. Feature importance analysis identified the amount of arrears variable as the most dominant factor influencing prediction outcomes. Strategic recommendations for university implementation include: (1) deploying a data-driven early warning system to identify at-risk students, (2) offering payment relief or installment programs for students with high arrears, and (3) conducting regular financial monitoring through a dashboard to support timely decision-making. Therefore, this study not only produces an effective predictive model but also provides practical solutions for improving university financial management.

Keywords


GridSearchCV; Higher Education Financial Management; Machine Learning; Model Evaluation (AUC, F1, Accuracy); Random Forest; Recursive Feature Elimination; Student Loan Default Prediction

Full Text:

PDF

References


B. S. R. Sudirman, I. Oktavia, F. H. Sarumaha, “Analisis Keterlambatan Pembayaran dalam Industri Fintech menggunakan Algoritma C4.5,” Vol. 11, No. 2, pp. 166–177, 2024.

M. Nurhasanah, I. Zufria, U. Islam, and N. Sumatera, “Implementasi Algoritma C5.0 untuk memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan pada SMP Swasta An-Naas Binjai,” Vol. 9, No. 1, pp. 107–116, 2024.

F. Riskiyono and D. Mahdiana, “Implementation of Random Forest Algorithm for Graduation Prediction,” Sinkron, Vol. 8, No. 3, pp. 1662–1670, 2024, DOI: 10.33395/sinkron.v8i3.13750.

R. Bakri, N. P. Astuti, and A. S. Ahmar, “Machine Learning Algorithms with Parameter Tuning to Predict Students’ Graduation-on-time: A Case Study in Higher Education,” J. Appl. Sci. Eng. Technol. Educ., Vol. 4, No. 2, pp. 259–265, 2022, DOI: 10.35877/454ri.asci1581.

A. Akbar, Z. Indra, Y. Andriyani, and T. Melia, “Implementation of the Random Forest Method for Predicting Students’ Length of Study,” J. Stat. Methods Data SCI., Vol. 1, No. 2, pp. 32–43, 2024, DOI: 10.31258/jsmds.v1i2.15.

Y. Abubakar, N. Bahiah, and H. Ahmad, “Prediction of Students’ Performance in E-Learning Environment using Random Forest,” Int. J. Innov. Comput., Vol. 7, No. 2, pp. 1–5, 2017, [Online]. Available: http://se.fsksm.utm.my/ijic/index.php/ijic

D. Puspita, S. Nilam, M. I. Arifyanto, P. Studi, and M. Sains, “Prediction of Electricity Bill Payment Delays for Customers using A Machine Learning Approach Listrik Pelanggan dengan Pendekatan Machine,” Vol. 10, No. 1, pp. 446–457, 2025.

R. A. Zuama, N. Ichsan, A. B. Pohan, M. S. Azis, and M. Lase, “An Implementation of Machine Learning on Loan Default Prediction based on Customer Behavior,” J. Info Sains Inform. dan Sains, Vol. 14, No. 01, pp. 157–164, 2024, DOI: 10.54209/infosains.v14i01.

R. Pullela and K. Vaddepally, “Payment Date Prediction using Machine Learning,” Int. J. Res. Trends Innov., Vol. 8, No. 5, pp. 224–228, 2023, [Online]. Available: https://www.ijrti.org/papers/IJRTI2305034.pdf

I. A. Rahmi, F. M. Afendi, and A. Kurnia, “Metode AdaBoost dan Random Forest untuk Prediksi Peserta JKN-KIS yang Menunggak,” Jambura J. Math., Vol. 5, No. 1, pp. 83–94, 2023, doi: 10.34312/jjom.v5i1.15869.

D. Germandy, C. Putra, and A. T. Putra, “Optimizing Random Forest for Predicting Thoracic Surgery Success in Lung Cancer using Recursive Feature Elimination and GridSearchCV,” Vol. 2, No. 2, pp. 97–105, 2024, DOI: 10.15294/rji.v2i2.73154.

R. S. Baker and P. S. Inventado, “Emergence and Innovation in Digital Learning: Foundations and Applications,” Emerg. Innov. Digit. Learn. Found. Appl., pp. 1–13, 2016, DOI: 10.15215/aupress/9781771991490.01.

Sutarman, R. Siringoringo, D. Arisandi, E. Kurniawan, and E. B. Nababan, “Model Klasifikasi dengan Logistic Regression dan Recursive Feature Elimination pada Data Tidak Seimbang,” J. Teknol. Inf. dan Ilmu Komput., Vol. 11, No. 4, pp. 735–742, 2024, DOI: 10.25126/jtiik.1148198.

Y. Priyatno and D. Wirantanu, “Comparison of Genetic Algorithm and Recursive Feature Elimination on,” J. Resti, Vol. 5, No. 158, pp. 189–198, 2024.

L. Moumeni, M. Saber, I. Slimani, I. Elfarissi, and Z. Bougroun, “Machine Learning for Credit Card Fraud Detection,” Lect. Notes Electr. Eng., Vol. 745, No. 24, pp. 211–221, 2022, DOI: 10.1007/978-981-33-6893-4_20.

V. Sheth, U. Tripathi, and A. Sharma, “A Comparative Analysis of Machine Learning Algorithms for Classification Purpose,” Procedia Comput. SCI., Vol. 215, pp. 422–431, 2022, DOI: 10.1016/j.procs.2022.12.044.

P. S. Pravin, J. Z. M. Tan, K. S. Yap, and Z. Wu, “Hyperparameter Optimization Strategies for Machine Learning-based Stochastic Energy Efficient Scheduling in Cyber-Physical Production Systems,” Digit. Chem. Eng., Vol. 4, No. July, p. 100047, 2022, DOI: 10.1016/j.dche.2022.100047.

D. Wicaksono, A. Mareta, and A. Erdiyanto, “Machine Learning-based Cow Milk Quality Classification using Recursive Feature Elimination Cross-Validation,” Vol. 14, No. 2, 2024.

L. G. R. Putra, D. D. Prasetya, and M. Mayadi, “Student Dropout Prediction using Random Forest and XGBoost Method,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., Vol. 9, No. 1, pp. 147–157, 2025, DOI: 10.29407/intensif.v9i1.21191.




DOI: https://doi.org/10.32520/stmsi.v15i1.5411

Article Metrics

Abstract view : 6 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.