Prediction of Unpaid Student Fees at Muhammadiyah Ahmad Dahlan University Cirebon using the Random Forest Algorithm
Abstract
Keywords
Full Text:
PDFReferences
B. S. R. Sudirman, I. Oktavia, F. H. Sarumaha, “Analisis Keterlambatan Pembayaran dalam Industri Fintech menggunakan Algoritma C4.5,” Vol. 11, No. 2, pp. 166–177, 2024.
M. Nurhasanah, I. Zufria, U. Islam, and N. Sumatera, “Implementasi Algoritma C5.0 untuk memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan pada SMP Swasta An-Naas Binjai,” Vol. 9, No. 1, pp. 107–116, 2024.
F. Riskiyono and D. Mahdiana, “Implementation of Random Forest Algorithm for Graduation Prediction,” Sinkron, Vol. 8, No. 3, pp. 1662–1670, 2024, DOI: 10.33395/sinkron.v8i3.13750.
R. Bakri, N. P. Astuti, and A. S. Ahmar, “Machine Learning Algorithms with Parameter Tuning to Predict Students’ Graduation-on-time: A Case Study in Higher Education,” J. Appl. Sci. Eng. Technol. Educ., Vol. 4, No. 2, pp. 259–265, 2022, DOI: 10.35877/454ri.asci1581.
A. Akbar, Z. Indra, Y. Andriyani, and T. Melia, “Implementation of the Random Forest Method for Predicting Students’ Length of Study,” J. Stat. Methods Data SCI., Vol. 1, No. 2, pp. 32–43, 2024, DOI: 10.31258/jsmds.v1i2.15.
Y. Abubakar, N. Bahiah, and H. Ahmad, “Prediction of Students’ Performance in E-Learning Environment using Random Forest,” Int. J. Innov. Comput., Vol. 7, No. 2, pp. 1–5, 2017, [Online]. Available: http://se.fsksm.utm.my/ijic/index.php/ijic
D. Puspita, S. Nilam, M. I. Arifyanto, P. Studi, and M. Sains, “Prediction of Electricity Bill Payment Delays for Customers using A Machine Learning Approach Listrik Pelanggan dengan Pendekatan Machine,” Vol. 10, No. 1, pp. 446–457, 2025.
R. A. Zuama, N. Ichsan, A. B. Pohan, M. S. Azis, and M. Lase, “An Implementation of Machine Learning on Loan Default Prediction based on Customer Behavior,” J. Info Sains Inform. dan Sains, Vol. 14, No. 01, pp. 157–164, 2024, DOI: 10.54209/infosains.v14i01.
R. Pullela and K. Vaddepally, “Payment Date Prediction using Machine Learning,” Int. J. Res. Trends Innov., Vol. 8, No. 5, pp. 224–228, 2023, [Online]. Available: https://www.ijrti.org/papers/IJRTI2305034.pdf
I. A. Rahmi, F. M. Afendi, and A. Kurnia, “Metode AdaBoost dan Random Forest untuk Prediksi Peserta JKN-KIS yang Menunggak,” Jambura J. Math., Vol. 5, No. 1, pp. 83–94, 2023, doi: 10.34312/jjom.v5i1.15869.
D. Germandy, C. Putra, and A. T. Putra, “Optimizing Random Forest for Predicting Thoracic Surgery Success in Lung Cancer using Recursive Feature Elimination and GridSearchCV,” Vol. 2, No. 2, pp. 97–105, 2024, DOI: 10.15294/rji.v2i2.73154.
R. S. Baker and P. S. Inventado, “Emergence and Innovation in Digital Learning: Foundations and Applications,” Emerg. Innov. Digit. Learn. Found. Appl., pp. 1–13, 2016, DOI: 10.15215/aupress/9781771991490.01.
Sutarman, R. Siringoringo, D. Arisandi, E. Kurniawan, and E. B. Nababan, “Model Klasifikasi dengan Logistic Regression dan Recursive Feature Elimination pada Data Tidak Seimbang,” J. Teknol. Inf. dan Ilmu Komput., Vol. 11, No. 4, pp. 735–742, 2024, DOI: 10.25126/jtiik.1148198.
Y. Priyatno and D. Wirantanu, “Comparison of Genetic Algorithm and Recursive Feature Elimination on,” J. Resti, Vol. 5, No. 158, pp. 189–198, 2024.
L. Moumeni, M. Saber, I. Slimani, I. Elfarissi, and Z. Bougroun, “Machine Learning for Credit Card Fraud Detection,” Lect. Notes Electr. Eng., Vol. 745, No. 24, pp. 211–221, 2022, DOI: 10.1007/978-981-33-6893-4_20.
V. Sheth, U. Tripathi, and A. Sharma, “A Comparative Analysis of Machine Learning Algorithms for Classification Purpose,” Procedia Comput. SCI., Vol. 215, pp. 422–431, 2022, DOI: 10.1016/j.procs.2022.12.044.
P. S. Pravin, J. Z. M. Tan, K. S. Yap, and Z. Wu, “Hyperparameter Optimization Strategies for Machine Learning-based Stochastic Energy Efficient Scheduling in Cyber-Physical Production Systems,” Digit. Chem. Eng., Vol. 4, No. July, p. 100047, 2022, DOI: 10.1016/j.dche.2022.100047.
D. Wicaksono, A. Mareta, and A. Erdiyanto, “Machine Learning-based Cow Milk Quality Classification using Recursive Feature Elimination Cross-Validation,” Vol. 14, No. 2, 2024.
L. G. R. Putra, D. D. Prasetya, and M. Mayadi, “Student Dropout Prediction using Random Forest and XGBoost Method,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., Vol. 9, No. 1, pp. 147–157, 2025, DOI: 10.29407/intensif.v9i1.21191.
DOI: https://doi.org/10.32520/stmsi.v15i1.5411
Article Metrics
Abstract view : 6 timesPDF - 0 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







