A Comparative Study of LSTM and GRU Models for Wind Forecasting

Chaidir Chalaf Islamy, Adnan Wahabi

Abstract


The use of deep learning in the current technological era is increasingly widespread, including in the field of meteorology to support aviation safety. As an archipelagic country, Indonesia faces significant challenges in ensuring flight safety due to unpredictable weather conditions, particularly wind direction and speed, which greatly influence takeoff and landing operations. To address these challenges, the Automatic Weather Observing System (AWOS) plays a crucial role in providing real-time weather data. This study aims to compare the performance of two popular deep learning models for time series data, namely Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), in forecasting wind direction and speed based on AWOS data from Sultan Hasanuddin International Airport for the period of January 2020–December 2022, obtained from the National Oceanic and Atmospheric Administration (NOAA) website. After preprocessing, five out of eight attributes were used for modeling. The evaluation results show that the LSTM model consistently outperformed GRU in all forecasting scenarios (30 minutes, 1 hour, and 1.5 hours). For wind direction, LSTM achieved MAE values of 10.92°–11.01°, MSE 242.45–247.89, and RMSE 15.57°–15.74°, all lower than those of GRU. For wind speed, LSTM recorded MAE values of 30.32–31.72 knots, MSE 1868.53–2013.92, and RMSE 43.23–44.88 knots, also outperforming GRU. This research is expected to contribute to the development of risk mitigation systems and the advancement of weather forecasting technology in the future.

Keywords


Deep Learning;Long Short-Term Memory;Gated Recurrent Unit;Wind Forecasting

Full Text:

PDF

References


Badan Pusat Statistik, “Jumlah Penduduk Pertengahan Tahun (Ribu Jiwa), 2022-2024.” Accessed: Jan. 18, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTk3NSMy/jumlah-penduduk-pertengahan-tahun--ribu-jiwa-.html

Badan Kebijakan Transportasi Kementrian Perhubungan, “Meteorologi dan Jalur Penerbangan.” Accessed: Jan. 18, 2025. [Online]. Available: https://baketrans.kemenhub.go.id/berita/meteorologi-dan-jalur-penerbangan

S. H. Noh, “Analysis of Gradient Vanishing of RNNs and Performance Comparison,” Information (Switzerland), Vol. 12, No. 11, Nov. 2021, DOI: 10.3390/info12110442.

I. W. A. Suranata, “View of Pengembangan Model Prediksi Curah Hujan di Kota Denpasar menggunakan Metode LSTM dan GRU,” Oct. 2023, Accessed: Jan. 19, 2025. [Online]. Available: https://mail.jsi.stikom-bali.ac.id/index.php/jsi/article/view/603

S. Hochreiter and J. Schmidhuber, “Long Shortterm Memory,” 1997, Accessed: Jan. 19, 2025. [Online]. Available: https://www.bioinf.jku.at/publications/older/2604.pdf

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” Dec. 2014, [Online]. Available: http://arxiv.org/abs/1412.3555

M. Ryan and S. Alfiandy, “Prediksi Kecepatan Angin 12 Jam Kedepan menggunakan Automatic Weather Observing System (AWOS) berbasis Regresi Linear,” 2022, Accessed: Jan. 22, 2025. [Online]. Available: https://www.gawpalu.id/bgb/index.php/bgb/article/view/63

A. Empi and M. Fitriyawita, “Pemanfaatan Data AWOS untuk mengindentifikasi Angin di Landas Pacu Bandara Supadio Pontianak dengan menggunakan WRPLOT,” 2023, Accessed: Jan. 22, 2025. [Online]. Available: https://www.balai2bmkg.id/index.php/buletin_mkg/article/view/44

Y. Karyadi, “Prediksi Kualitas Udara dengan Metoda LSTM, Bidirectional LSTM, dan GRU,” 2022, Accessed: Jan. 22, 2025. [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/1588

J. Anjani, H. P. A. Tjahyaningtijas, L. G. P. A. Buditjahjanto, and L. Anifah, “Prediction of Air Temperature on Runway 10 Juanda Airport using Hybrid LSTM,” 2024, Accessed: Jan. 22, 2025. [Online]. Available: https://journal.unesa.ac.id/index.php/inajeee/article/view/33130

S. I. Krich and S. M. Sussman, “A Concept and Plan for the Development of a Weather Support Subsystem for Air Traffic Control,” Apr. 1976. Accessed: Jul. 08, 2025. [Online]. Available: https://www.ll.mit.edu/sites/default/files/publication/doc/2018-12/Krich_1976_ATC-64_WW-15318.pdf

K. Sofi, A. S. Sunge, S. R. Riady, and A. Z. Kamalia, “Perbandingan Algoritma Linear Regression, LSTM, dan GRU dalam memprediksi Harga Saham dengan Model Time Series,” 2021, Accessed: Jan. 22, 2025. [Online]. Available: https://journal.universitasmulia.ac.id/index.php/seminastika/article/view/275

D. A. H. Panggabean, F. M. Sihombing, and N. M. Aruan, “Prediksi Tinggi Curah Hujan dan Kecepatan Angin berdasarkan Data Cuaca dengan Penerapan Algoritma Artificial Neural Network (ANN),” 2021, Accessed: Jan. 22, 2025. [Online]. Available: https://journal.universitasmulia.ac.id/index.php/seminastika/article/view/237

Federal Aviation Administration (FAA), “Advisory Circular,” Aug. 2016. Accessed: Jul. 18, 2025. [Online]. Available: https://www.faa.gov/documentlibrary/media/advisory_circular/ac_00-6b.pdf

International Civil Aviation Organization (ICAO), “Annex 3 to the Convention on International Civil Aviation,” Montreal, Kanada, Jul. 2010.




DOI: https://doi.org/10.32520/stmsi.v14i6.5639

Article Metrics

Abstract view : 5 times
PDF - 3 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.