Application of OLAP based Business Intelligence and Predictive Analysis (Random Forest Classifier and ARIMA) in a Fintech P2P Lending Company

Kristiana Olivia, Frederik Samuel Papilaya

Abstract


The rising rate of non-performing loans (NPLs) in the financial technology (fintech) P2P lending industry has become a serious challenge, including for PT XYZ, which focuses on funding the MSME sector. This study applies Business Intelligence using OLAP and predictive analytics at PT XYZ over a two-year period. The dataset consists of records from January 2023 to December 2024, comprising 276,320 loan transactions and 267,542 repayment records. The OLAP approach was employed to explore loan transactions, repayment performance, and delinquency patterns across multiple dimensions, such as account, time, payment method, and bank used. The results of this exploration were visualized through three interactive dashboards tailored to the analysis focus. Predictive analysis was conducted using a Random Forest Classifier, which identified loan_amount as the most influential variable in predicting potential delinquency. However, the model’s performance was relatively limited, achieving an accuracy of 61.47%, precision of 38.33%, and recall of 36.89%. Delinquency trend forecasting using the ARIMA (2,1,1) model indicated an increase in overdue cases up to March 2025, followed by a decline in subsequent months. The model evaluation yielded MAPE of 39.74%, sMAPE of 33.32%, and RMSE of 1086.77, suggesting moderately adequate predictive accuracy but with a relatively high error rate. This study recommends implementing incentives for OBA (Online Borrower Accounts) with good repayment performance and restricting loan ceilings based on an automated risk score. Further development is advised by enriching the dataset with additional variables and enhancing predictive models through techniques such as oversampling (e.g., SMOTE) and hyperparameter tuning to maximize accuracy.

Keywords


financial technology; non-performing loan; Business Intelligence; predictive analysis

Full Text:

PDF

References


E. Budiyanti, “Mengatasi Kredit Macet Fintech Peer To Peer (P2P) Lending,” 2024. [Online]. Available: https://pusaka.dpr.go.id

D. K. Turban, Efraim, Ramesh Sharda, Dursun Delen, Business Intelligence: A Managerial Approach. Prentice Hall, 2011.

D. Loshin, Business Intelligence: The Savvy Manager’s Guide. Waltham: Morgan Kaufmann, 2013. DOI: https://doi.org/10.1016/C2010-0-67240-3.

A. Maulana and D. A. N. Wulandari, “Business Intelligence Implementation to Analyze Perfect Store Data using the OLAP Method,” J. Publ. Informatics Eng. Res., Vol. 3, No. 2, pp. 104–111, 2019, DOI: 10.33395/sinkron.v3i2.10036.

S. A. S. Mola, N. D. Rumlaklak, and D. P. N. Polly, Analisis Sentimen dengan Metode Random Forest. Bandung: Kaizen Media Publishing, 2024. doi: https://kaizenpublisher.co.id/portfolio/view/87.

Aswi and Sukarna, Analisis Deret Waktu : Teori dan Aplikasi. Makassar: Andira Publisher, 2006. DOI: http://eprints.unm.ac.id/id/eprint/21944.

W. Sulistyoningsih, I. N. Y. A. Wiajaya, and H. S. Alam, “Penerapan Model Business Intelligence pada Perusahaan Retail XLT untuk meningkatkan Strategi Pemasaran,” J. Ilm. Teknol. Inf. Asia, Vol. 17, No. 1, p. 33, 2023, DOI: 10.32815/jitika.v17i1.893.

A. R. I. Sipayung, N. E. Zendrato, T. A. Marbun, J. N. Telaumbanua, and O. Sihombing, “Penerapan Teknologi Business Intelligence dalam meningkatkan Strategi Penjualan dengan Metode OLAP pada Cafe Le Kahve,” J. TEKINKOM, Vol. 7, No. 2, pp. 628–636, 2024, DOI: 10.37600/tekinkom.v7i2.1529.

M. Anis, “Perancangan Sistem Business Intelligence menggunakan Olap sebagai Decision Financial Support berbasis Web dengan Metode Waterfall,” J. Sos. Teknol., Vol. 1, No. 10, pp. 131–144, 2021, DOI: 10.59188/jurnalsostech.v1i10.217.

M. Mahendra Alvanof and R. Kesuma Dinata, “Penerapan Algoritma Random Forest dalam Deteksi dan Klasifikasi Ransomware,” J. Elektron. dan Teknol. Inf., Vol. 5, No. 2, pp. 2721–9380, 2024, DOI: https://doi.org/10.5201/jet.v5i2.488.

E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah,” J. Appl. Comput. Sci. Technol., Vol. 4, No. 1, pp. 58–64, 2023, DOI: 10.52158/jacost.v4i1.491.

M. M. Rofi, F. A. Setiawan, and F. Riana, “Perbandingan Metode K-NN dan Random Forest pada Klasifikasi Mahasiswa Berpotensi Dropout,” INFOTECH J., Vol. 10, No. 1, pp. 84–89, 2024, DOI: 10.31949/infotech.v10i1.8856.

H. Zhang et al., “Application of Random Forest Classifier in Loan Default Forecast,” in Communications in Computer and Information Science, 2020, pp. 410–420. DOI: 10.1007/978-981-15-8101-4_37.

R. C. Putri and L. Junaedi, “Penerapan Metode Peramalan Autoregressive Integrated Moving Average pada Sistem Informasi Pengendalian Persedian Bahan Baku (Studi Kasus : Toko Kue Onde-Onde Surabaya),” J. Ilmu Komput. dan Bisnis, Vol. XIII, No. 1, pp. 164–173, 2022, DOI: 10.47927/jikb.v13i1.293.

M. S. Fahmuddin, Ruliana, and S. M. Sri Mustika, “Perbandingan Metode ARIMA dan Single Exponential Smoothing dalam Peramalan Nilai Ekspor Kakao Indonesia,” VARIANSI J. Stat. Its Appl. Teach. Res., Vol. 5, No. 3, pp. 163–176, 2023, DOI: 10.35580/variansiunm193.

A. R. Pratama and Firdaus, “Perbandingan Metode ARIMA dengan Fuzzy Time Series Model Chen pada Peramalan Curah Hujan di Kota Bengkulu,” J. Math-UMB.EDU, Vol. 11, No. 3, pp. 154–166, 2024, DOI: 10.36085/mathumbedu.v11i3.6480.

S. Hanifah, F. Akbar, and R. P. Santi, “Implementasi Business Intelligence dan Prediksi menggunakan Regresi Linear pada Data Penjualan dan Breakage di PT XYZ,” J. Nas. Teknol. dan Sist. Inf., Vol. 8, No. 3, pp. 144–152, 2022, DOI: 10.25077/teknosi.v8i3.2022.144-152.

S. A. Moss, Larissa Terpeluk, Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications. Addison-Wesley Professional, 2003. DOI: https://dl.acm.org/doi/10.5555/773287.

J. C. J. Martilla, John A., “Importance-Performance Analysis,” J. Mark., Vol. 41, No. 1, pp. 77–79, 1977, DOI: https://doi.org/10.2307/1250495.

R. Kimball and M. Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (3rd Edition). John Wiley & Sons, 2013. DOI: https://dl.acm.org/doi/10.5555/2543973.




DOI: https://doi.org/10.32520/stmsi.v14i6.5663

Article Metrics

Abstract view : 5 times
PDF - 3 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.