A Multimodal Deep Learning Framework for Amyotrophic Lateral Sclerosis Diagnosis using Clinical and Audio Morphology Features
Abstract
Keywords
Full Text:
PDFReferences
L. Migliorelli, L. Scoppolini Massini, M. Coccia, L. Villani, E. Frontoni, and S. Squartini, “A Deep Learning-based Telemonitoring Application to Automatically Assess Oral Diadochokinesis in Patients with Bulbar Amyotrophic Lateral Sclerosis,” Comput. Methods Programs Biomed., Vol. 242, No. October, p. 107840, 2023, DOI: 10.1016/j.cmpb.2023.107840.
G. Lauria, R. Curcio, and P. Tucci, “A Machine Learning Approach for Highlighting microRNAs as Biomarkers Linked to Amyotrophic Lateral Sclerosis Diagnosis and Progression,” Biomolecules, Vol. 14, No. 1, 2024, DOI: 10.3390/biom14010047.
T. P. Umar et al., “Artificial Intelligence for Screening and Diagnosis of Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis,” Amyotroph. Lateral Scler. Front. Degener., Vol. 25, No. 5–6, pp. 425–436, 2024, DOI: 10.1080/21678421.2024.2334836.
M. Vidovic, L. H. Müschen, S. Brakemeier, G. Machetanz, M. Naumann, and S. Castro-Gomez, “Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis,” Cells, Vol. 12, No. 5, pp. 1–24, 2023, DOI: 10.3390/cells12050736.
K. Imamura et al., “Prediction Model of Amyotrophic Lateral Sclerosis by Deep Learning with Patient Induced Pluripotent Stem Cells,” Ann. Neurol., Vol. 89, No. 6, pp. 1226–1233, 2021, DOI: 10.1002/ana.26047.
M. Neumann et al., “Investigating the Utility of Multimodal Conversational Technology and Audiovisual Analytic Measures for the Assessment and Monitoring of Amyotrophic Lateral Sclerosis at Scale,” Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, Vol. 4, pp. 3061–3065, 2021, DOI: 10.21437/Interspeech.2021-1801.
F. Fernandes et al., “Biomedical Signals and Machine Learning in Amyotrophic Lateral Sclerosis: A Systematic Review,” Biomed. Eng. Online, Vol. 20, No. 1, pp. 1–22, 2021, DOI: 10.1186/s12938-021-00896-2.
K. G. Gwathmey et al., “Diagnostic Delay in Amyotrophic Lateral Sclerosis,” Eur. J. Neurol., Vol. 30, No. 9, pp. 2595–2601, 2023, DOI: 10.1111/ene.15874.
R. Chauhan and U. Sharma, “Exploiting Speech Tremors: Machine Learning for Early Diagnosis of Amyotrophic Lateral Sclerosis,” Eng. Res. Express, Vol. 6, No. 4, 2024, DOI: 10.1088/2631-8695/ad7d62.
B. G. Schultz et al., “Automatic Speech Recognition in Neurodegenerative Disease,” Int. J. Speech Technol., Vol. 24, No. 3, pp. 771–779, 2021, DOI: 10.1007/s10772-021-09836-w.
M. Bowden et al., “A Systematic Review and Narrative Analysis of Digital Speech Biomarkers in Motor Neuron Disease,” npj Digit. Med., Vol. 6, No. 1, 2023, DOI: 10.1038/s41746-023-00959-9.
R. Cave and S. Bloch, “The Use of Speech Recognition Technology by People Living with Amyotrophic Lateral Sclerosis: A Scoping Review,” Disabil. Rehabil. Assist. Technol., Vol. 18, No. 7, pp. 1043–1055, 2023, DOI: 10.1080/17483107.2021.1974961.
M. Antunes et al., “A Morphology-based Feature Set for Automated Amyotrophic Lateral Sclerosis diagnosis on Surface Electromyography,” Biomed. Signal Process. Control, Vol. 79, No. P1, p. 104011, 2023, DOI: 10.1016/j.bspc.2022.104011.
P. Rong, L. Heidrick, and G. L. Pattee, “A Multimodal Approach to Automated Hierarchical Assessment of Bulbar Involvement in Amyotrophic Lateral Sclerosis,” Front. Neurol. , Vol. 15, No. May, 2024, DOI: 10.3389/fneur.2024.1396002.
R. Cebola, D. Folgado, A. Carreiro, and H. Gamboa, “Speech-based Supervised Learning Towards the Diagnosis of Amyotrophic Lateral Sclerosis,” Vol. 4, No. Biostec, pp. 74–85, 2023, DOI: 10.5220/0011694700003414.
B. Tafuri et al., “Machine Learning-based Radiomics for Amyotrophic Lateral Sclerosis Diagnosis,” Expert Syst. Appl., Vol. 240, No. November 2023, p. 122585, 2024, DOI: 10.1016/j.eswa.2023.122585.
M. Jamrozy, E. Maj, M. Bielecki, M. Bartoszek, M. Golebiowski, and M. Kuzma-Kozakiewicz, “Machine Learning Classificatory as a Tool in the Diagnosis of Amyotrophic Lateral Sclerosis using Diffusion Tensor Imaging Parameters Collected with 1.5T MRI Scanner: A Case study,” Electron. J. Gen. Med., Vol. 20, No. 6, 2023, DOI: 10.29333/ejgm/13536.
T. D. Kocar, A. Behler, A. C. Ludolph, H. P. Müller, and J. Kassubek, “Multiparametric Microstructural MRI and Machine Learning Classification Yields High Diagnostic Accuracy in Amyotrophic Lateral Sclerosis: Proof of Concept,” Front. Neurol., Vol. 12, No. November, pp. 1–7, 2021, DOI: 10.3389/fneur.2021.745475.
A. Tena, F. Clarià, F. Solsona, and M. Povedano, “Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis based on Phonatory and Time-Frequency Features,” Sensors, Vol. 22, No. 3, 2022, DOI: 10.3390/s22031137.
O. P. Kurmi, M. Gyanchandani, N. Khare, and A. Pillania, “Comparative Analysis on Classification Efficiency of Deep Learning Models on Amyotrophic Lateral Sclerosis Patients using Speech Signals,” Vol. 7, No. 1, pp. 1–10, 2024.
L. E. R. Simmatis, J. Robin, M. J. Spilka, and Y. Yunusova, “Detecting Bulbar Amyotrophic Lateral Sclerosis (ALS) using Automatic Acoustic Analysis,” Biomed. Eng. Online, Vol. 23, No. 1, pp. 1–13, 2024, DOI: 10.1186/s12938-023-01174-z.
T. Bhattacharjee et al., “Effect of Noise and Model Complexity on Detection of Amyotrophic Lateral Sclerosis and Parkinson’s Disease using Pitch and MFCC,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., Vol. 2021-June, pp. 7313–7317, 2021, DOI: 10.1109/ICASSP39728.2021.9413997.
L. Wang et al., “Automatic Prediction of Amyotrophic Lateral Sclerosis Progression using Longitudinal Speech Transformer,” pp. 2000–2004, 2024, DOI: 10.21437/interspeech.2024-158.
K. H. An et al., “Automatic Early Detection of Amyotrophic Lateral Sclerosis from Intelligible Speech using Convolutional Neural Networks,” Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, Vol. 2018-Septe, No. August, pp. 1913–1917, 2018, DOI: 10.21437/Interspeech.2018-2496.
A. Jayakumar et al., “Classification Between Patients with Amyotrophic Lateral Sclerosis and Healthy Individuals using Hypernasality in Speech : A Low Complexity Approach.”
L. Ilias and D. Askounis, “Recognition of Dysarthria in Amyotrophic Lateral Sclerosis Patients using Hypernetworks,” 2025, [Online]. Available: http://arxiv.org/abs/2503.01892.
C. Pancotti et al., “Deep Learning Methods to Predict Amyotrophic Lateral Sclerosis Disease Progression,” SCI. Rep., Vol. 12, No. 1, pp. 1–10, 2022, DOI: 10.1038/s41598-022-17805-9.
F. Faghri et al., “Identifying and Predicting Amyotrophic Lateral Sclerosis Clinical Subgroups: A Population-based Machine-Learning Study,” Lancet Digit. Heal., Vol. 4, No. 5, pp. e359–e369, 2022, DOI: 10.1016/S2589-7500(21)00274-0.
T. D. Ngo et al., “An EEG & Eye-Tracking Dataset of ALS Patients & Healthy People During Eye-Tracking-based Spelling System Usage,” SCI. Data, Vol. 11, No. 1, pp. 1–11, 2024, DOI: 10.1038/s41597-024-03501-y.
E. L. Feldman et al., “Amyotrophic Lateral Sclerosis,” Lancet, Vol. 400, No. 10360, pp. 1363–1380, 2022, DOI: https://doi.org/10.1016/S0140-6736(22)01272-7.
F. G. Vieira et al., “A Machine-Learning based Objective Measure for ALS Disease Severity,” npj Digit. Med., Vol. 5, No. 1, 2022, Doi: 10.1038/s41746-022-00588-8.
T. Segura et al., “Symptoms Timeline and Outcomes in Amyotrophic Lateral Sclerosis using Artificial Intelligence,” SCI. Rep., Vol. 13, No. 1, pp. 1–10, 2023, DOI: 10.1038/s41598-023-27863-2.
A. Behler, H. P. Müller, A. C. Ludolph, and J. Kassubek, “Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development,” Int. J. Mol. SCI., Vol. 24, No. 3, 2023, DOI: 10.3390/ijms24031911.
K. Fukushima et al., “Early Diagnosis of Amyotrophic Lateral Sclerosis based on Fasciculations in Muscle Ultrasonography: A Machine Learning Approach,” Clin. Neurophysiol., Vol. 140, No. June, pp. 136–144, 2022, Doi: 10.1016/j.clinph.2022.06.005.
R. Dubbioso et al., “Voice Signals Database of ALS Patients with Different Dysarthria Severity and Healthy Controls,” SCI. Data, Vol. 11, No. 1, pp. 1–14, 2024, DOI: 10.1038/s41597-024-03597-2.
A. Catanese et al., “Multiomics and Machine-Learning Identify Novel Transcriptional and Mutational Signatures in Amyotrophic Lateral Sclerosis,” Brain, Vol. 146, No. 9, pp. 3770–3782, 2023, DOI: 10.1093/brain/awad075.
C. Vildan, D. Sule, B. Turker, U. Hilmi, and K. B. Sibel, “Genetic Alterations of C9orf72, SOD1, TARDBP, FUS, and UBQLN2 Genes in Patients with Amyotrophic Lateral Sclerosis,” Cogent Med., Vol. 6, No. 1, p. 1582400, 2019, DOI: 10.1080/2331205x.2019.1582400.
S. Edgar et al., “Mutation Analysis of SOD1, C9orf72, TARDBP and FUS Genes in Ethnically-Diverse Malaysian Patients with Amyotrophic Lateral Sclerosis (ALS),” Neurobiol. Aging, Vol. 108, No. xxxx, pp. 200–206, 2021, DOI: 10.1016/j.neurobiolaging.2021.07.008.
I. N. Switrayana, R. Hammad, P. Irfan, T. T. Sujaka, and M. H. Nasri, “Comparative Analysis of Stock Price Prediction using Deep Learning with Data Scaling Method,” Vol. 7, No. 1, pp. 78–90, 2025.
R. D. Alamsyah and S. Suyanto, “Speech Gender Classification using Bidirectional Long Short Term Memory,” pp. 646–649, 2023.
S. Chaudhary and D. Kumar Sharma, “Gender Identification based on Voice Signal Characteristics,” pp. 869–874, 2018.
I. N. Switrayana, S. Hadi, and N. Sulistianingsih, “A Robust Gender Recognition System using Convolutional Neural Network on Indonesian Speaker,” Vol. 13, pp. 1008–1021, 2024.
I. N. Switrayana and N. U. Maulidevi, “Collaborative Convolutional Autoencoder for Scientific Article Recommendation,” Proc. - 2022 9th Int. Conf. Inf. Technol. Comput. Electr. Eng. ICITACEE 2022, pp. 96–101, 2022, DOI: 10.1109/ICITACEE55701.2022.9924130.
I. K. Nti, O. Nyarko-Boateng, and J. Aning, “Performance of Machine Learning Algorithms with Different K Values in K-fold CrossValidation,” Int. J. Inf. Technol. Comput. SCI., Vol. 13, No. 6, pp. 61–71, 2021, DOI: 10.5815/ijitcs.2021.06.05.
E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy, The Effect of Choosing Optimizer Algorithms to Improve Computer Vision Tasks: A Comparative Study, Vol. 82, No. 11. Multimedia Tools and Applications, 2022.
Y. Bai et al., “Understanding and Improving Early Stopping for Learning with Noisy Labels,” Adv. Neural Inf. Process. Syst., Vol. 29, No. NeurIPS, pp. 24392–24403, 2021.
Ž. Vujović, “Classification Model Evaluation Metrics,” Int. J. Adv. Comput. SCI. Appl., Vol. 12, No. 6, pp. 599–606, 2021, DOI: 10.14569/IJACSA.2021.0120670.
DOI: https://doi.org/10.32520/stmsi.v15i1.5763
Article Metrics
Abstract view : 4 timesPDF - 0 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







