Implementation of Image Processing in Scanning KTP Data using Optical Character Recognition (OCR)

Bachtiar Hanafi, Pratomo Stiaji, Wiwit Agus Triyanto

Abstract


The Indonesian national identity card (Kartu Tanda Penduduk or KTP) serves as the primary identification tool for citizens across various administrative processes, both in the public and private sectors. However, manual data entry from KTPs remains common, leading to potential errors, inefficiencies, and delays. This study aims to develop an Android-based application capable of automatically scanning and extracting data from KTPs using Optical Character Recognition (OCR) enhanced by Convolutional Neural Network (CNN) methods. CNN is applied during the image preprocessing stage to improve text area detection and character segmentation accuracy before the OCR process. The application is developed using the Python, Dart, PHP programming language and designed with a user-friendly interface. Extracted data such as full name, NIK, place and date of birth, and address are stored in a MySQL database via integrated web APIs. The research approach follows a software engineering methodology consisting of requirements analysis, system design, implementation, and system testing. Experimental results show that integrating CNN with OCR increases character recognition accuracy up to 86,7%, especially on low-quality or noisy images. Therefore, this application is expected to serve as an effective solution for accelerating and improving the accuracy of population data digitization in various institutions.

Keywords


CNN; OCR

Full Text:

PDF

References


A. M. Sri Hariyati, I. Nurayuni, I. S. Sa’diyah, A. R. Herawati, and K. Kismartini, “Implementasi E-Government dalam Pelayanan Publik (Studi Kasus Penyelenggaraan Pelayanan KTP Elektronik di Kecamatan Pulomerak),” J. Manaj. dan Ilmu Adm. Publik, Vol. 4, pp. 203–208, 2022, DOI: 10.24036/jmiap.v4i3.360.

I. D. Sucitra, M. H. Pratiknjo, and E. J. Kawung, “GOVERNANCE: Jurnal Ilmiah Kajian Politik Lokal dan Pembangunan,” Gov. J. Ilm. Kaji. Polit. Lokal dan Pembang., Vol. 10, No. 3, pp. 67–68, 2024.

W. T. Hardianto, F. Firdausi, and A. W. Lestari, “Fungsi E-KTP untuk mendukung Pemerintah Daerah dalam Pendataan dan Pelayanan Publik,” JPAP J. Penelit. Adm. Publik, Vol. 7, No. 2, pp. 212–222, 2021, DOI: 10.30996/jpap.v7i2.5704.

Rapar P and Rorimpandey G, “Penerapan Teknologi Optical Character Recognition pada Layanan Pendataan Pengunjung di PT. Pertamina Geothermal Energy Area Lahendong,” J. Soc. SCI. Res., Vol. 3, pp. 6484–6496, 2023.

A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung berbasis Optical Character Recognition (OCR),” J. Edukasi dan Penelit. Inform., Vol. 7, No. 1, p. 52, 2021, DOI: 10.26418/jp.v7i1.44133.

O. Isaura, M. Kalengkian, U. Sam, and R. Manado, “Aplikasi berbasis Web dengan menggunakan OCR ( Optical Character Recognition ) untuk Keselamatan Transportasi di Sulawesi Utara,” Innov. J. Soc. SCI. Res., Vol. 5, pp. 1971–1984, 2025.

A. Muliantara, C. Text, E. Text, D. Text, K. Pertanahan, and K. Karangasem, “Pengembangan Aplikasi berbasis Optical Character Recognition (OCR) di Kantor Pertanahan Kabupaten,” Vol. 2, pp. 601–606, 2024.

Nasywa Shafa Salsabila et al., “Penerapan Teknologi OCR Plat Nomor untuk meningkatkan Efisiensi dan Keamanan Akses Kendaraan,” J. SCI. Res. Dev., Vol. 6, No. 2, pp. 227–236, 2024, DOI: 10.56670/jsrd.v6i2.594.

A. Ayudhawara, B. Satrio, W. Poetro, M. Qomaruddin, I. Sultan, and A. Semarang, “Deteksi Ketersediaan Tempat Parkir menggunakan Mask R-CNN (Studi Kasus : Fakultas Teknologi Industri Universitas Islam Sultan Agung),” Semin. Ris. Mahasiswa-Computer Electr. (SERIMA-CE, Vol. 1, No. 1, pp. 245–251, 2023.

I. Nihayatul Husna, M. Ulum, A. Kurniawan Saputro, D. Tri Laksono, and D. Neipa Purnamasari, “Rancang Bangun Sistem Deteksi dan Perhitungan Jumlah Orang menggunakan Metode Convolutional Neural Network (CNN),” Semin. Nas. Fortei Reg., Vol. 7, pp. 1–6, 2022.

K. A. Syah, K. Anam, M. Arif, and H. Sasono, “Algoritma Yolov5 dan Easyocr dalam Pendeteksi Pencatatan Otomatis Plat Nomor Kendaraan Indonesia,” pp. 559–565.

K. Banu, D. Andreas, W. Anggoro, and A. Setiawan, “OCR: Masa Depan Pengenalan Karakter Optik dan Dampaknya pada Kehidupan Modern,” J. Teknol. Inf., Vol. 9, No. 2, pp. 147–156, 2023, DOI: 10.52643/jti.v9i2.3798.

J. Sistem, I. Aplikasi, and T. Informasi, “Jurnal+38+-+44,” Vol. 2, No. 1, pp. 38–44, 2025.

F. Syah, P. W. Ciptadi, A. E. Frinayanti, D. F. Anggraini, E. Amalia, and J. Informatika, “Implementasi CNN untuk Penerjemahan Bahasa melalui Pengenalan Citra Tulisan Tangan,” J. Din. Inform., Vol. 13, No. 2, pp. 59–70, 2024.

S. B. Pratama, M. E. F. Suharto, and W. E. Saputro, “Aplikasi Covid19 Monitoring berbasis Android menggunakan Android Studio dengan Bahasa Pemrograman Kotlin,” Sains Data J. Stud. Mat. dan Teknol., Vol. 1, No. 1, pp. 9–20, 2023, DOI: 10.52620/sainsdata.v1i1.5.

I. R. Mukhlis et al., “Rancangan Basis Data Absensi Pegawai menggunakan MySQL dengan Conceptual Data Model (CDM), Physical Data Model (PDM), dan Entity Relationship Diagram (ERD),” Comput. Insight J. Comput. SCI., Vol. 6, No. 2, pp. 1–17, 2024, DOI: 10.30651/comp_insight.v6i2.24337.

S. P. Collins et al., “No Title 済無No Title No Title No Title,” pp. 167–186, 2021.

J. H. Soeseno and Liliana, “Segmentasi Area KTP dari Image untuk Otomatisasi Pembacaan Data,” J. Infra Petra, Vol. 5, No. 1, pp. 1–5, 2017, [Online]. Available: http://publication.petra.ac.id/index.php/teknik-informatika/article/view/5131%0Ahttp://publication.petra.ac.id/index.php/teknik-informatika/article/download/5131/4724

T. Octaviani, H. Setiawan, and O. H. Kelana, “Perbandingan Pytesseract dan Template Matching untuk Otomatisasi Input Data KTP,” J. Buana Inform., Vol. 14, No. 02, pp. 147–156, 2023, DOI: 10.24002/jbi.v14i02.7612.

M. Haris, M. G. Suryanata, and M. Yetri, “Implementasi OCR menggunakan Algoritma Template Matching Correlation pada Pengarsipan e-KTP,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), Vol. 6, No. 2, p. 281, 2023, DOI: 10.53513/jsk.v6i2.8134.

P. Setiaji, K. Adi, and B. Surarso, “Development of Classification Method for Determining Chicken Egg Quality Using GLCM-CNN Method,” Ing. des Syst. d’Information, Vol. 29, No. 2, pp. 397–407, 2024, DOI: 10.18280/isi.290201.




DOI: https://doi.org/10.32520/stmsi.v15i1.5856

Article Metrics

Abstract view : 7 times
PDF - 4 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.