Adaptive Traffic Signal System Utilizing YOLOv11 and Fuzzy Logic for Congestion Mitigation

Dio Damas Permadi, Muchtar Ali Setyo Yudono, Abdul Haris Kuspranoto, Ardin Rozandi, Marina Artiyasa, Alvin Mubarok, Dwi Septiani

Abstract


The increasing number of vehicles in urban and suburban areas has led to traffic congestion, resulting in longer travel times, higher exhaust emissions, and an increased risk of accidents. Conventional fixed-time traffic signal systems often fail to respond dynamically to changing traffic conditions, leading to inefficient vehicle queues. This study proposes the development of an adaptive traffic signal system that utilizes YOLOv11 and fuzzy logic to detect vehicle volume and adjust green light durations in real time. YOLOv11 is employed to detect vehicles in each lane, while fuzzy logic is used to regulate green signal durations based on the detected vehicle counts. Experimental results demonstrate a detection accuracy of 0.92 and a recall of 0.93. The green light duration varies from 80 seconds for low traffic volumes to 100 seconds for high traffic volumes. The traffic signal cycle is dynamically adjusted according to vehicle density, with a maximum total cycle time of 100 seconds. Overall, the proposed system is proven effective in reducing congestion and improving traffic management efficiency at intersections with high vehicle volumes.

Keywords


fuzzy logic; intelligent adaptive traffic light; time control; vehicle detection; yolov11

Full Text:

PDF

References


M. Sharma, A. Bansal, V. Kashyap, P. Goyal, and T. H. Sheikh, “Intelligent Traffic Light Control System based on Traffic Environment using Deep Learning,” IOP Conf. Ser. Mater. Sci. Eng., Vol. 1022, No. 1, 2021, DOI: 10.1088/1757-899X/1022/1/012122.

A. Kurniasari and Jalinas, “Pendeteksian Tingkat Kepadatan Jalan menggunakan Metode Canny Edge Detection,” J. Ilm. Teknol. dan Rekayasa, Vol. 25, No. 3, pp. 239–248, 2020, DOI: 10.35760/tr.2020.v25i3.3419.

Irfan, D. R. Irawati, Y. I. Chandra, and Marti Riastuti, “Rancang Bangun Purwarupa Pengaturan Lampu Lalu Lintas berdasarkan Kepadatan Arus Kendaraan berbasis Mikrokontroler ATMega 328P,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), Vol. 5, No. 1, pp. 131–143, 2024, DOI: https://doi.org/10.30645/kesatria.v5i1.322.

E. S. Sendow, M. Sulistyaningsih, and J. F. Monoarfa, “Optimasi Waktu Tunggu Lampu Lalu Lintas dengan mengaplikasikan Teori Graf dan Metode Webster,” J. Educ., Vol. 6, No. 1, pp. 2272–2284, 2023, DOI: 10.31004/joe.v6i1.3240.

P. A. Rosyady, Z. A. Ikhsan, and M. R. Feter, “Prototype Lampu Lalu Lintas Adaptif berdasarkan Panjang Antrian Kendaraan berbasis Arduino Uno,” CIRCUIT J. Ilm. Pendidik. Tek. Elektro, Vol. 6, No. 2, pp. 173–186, 2022, DOI: ttp://dx.doi.org/10.22373/crc.v6i2.13748.

B. Sugandi and S. Lifitri, “Deteksi Pelanggaran Lampu Lalu Lintas berdasarkan Sensor Visual,” JST (Jurnal Sains dan Teknol., Vol. 11, No. 2, pp. 315–323, 2022, DOI: 10.23887/jstundiksha.v11i2.50287.

C. Chairani, I. Jaya, and H. Cipta, “Optimasi Waktu Tunggu Total dengan Metode Webster dalam mengatasi Kemacetan Lalu Lintas Persimpangan Jalan Kolonel Yos Sudarso,” FARABI J. Mat. dan Pendidik. Mat., Vol. 4, No. 2, pp. 175–180, 2021, DOI: 10.47662/farabi.v4i2.226.

Desmira, M. A. Hamid, N. A. Bakar, M. Nurtanto, and Sunardi, “A Smart Traffic Light using a Microcontroller based on the Fuzzy Logic,” IAES Int. J. Artif. Intell., Vol. 11, No. 3, pp. 809–818, 2022, DOI: 10.11591/ijai.v11.i3.pp809-818.

C. Gabriel and J. Arpasi, “Design and Implementation of a Smart Traffic Signal Control System,” Int. J. Eng. Technol. Res. Manag., Vol. 4, No. 04, pp. 28–36, 2020, DOI: 10.34074/scop.6004001.

S. Sabaar and S. S, “Rancang Bangun Kontrol Lampu Lalu Lintas Simpang Tiga berbasis Arduino,” J. Informatics Electron. Eng., Vol. 2, No. 1, pp. 10–14, 2022.

F. Mejart, Y. L. Prambodo, and H. M. Valentine, “Perancangan dan Pembuatan Alat Pemantau Lampu Lalu Lintas Simpang Lima menggunakan Mikrokontroler berbasis Web,” Sist. Komput. dan Teknol. Intelegensi Artifisial, Vol. 1, No. 1, pp. 55–66, 2022, DOI: 10.59039/sikomtia.v1i1.5.

D. C. Zulkarnain and R. B. Aji, “Smart City , Konsep Kota Pintar Deteksi Objek pada CCTV Lalu Lintas di Kota Nganjuk,” Stain. (Seminar Nas. Teknol. Sains), Vol. 3, No. 1, pp. 169–174, 2024, DOI: ttps://doi.org/10.29407/stains.v3i1.4217.

G. N. Laananila, I. D. Irawati, and D. N. Ramadan, “Smart Traffic Monitoring & Control dengan Pengolahan Citra Digital,” eProceedings Appl. SCI., Vol. 9, No. 1, pp. 330–336, 2023, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/appliedscience/article/view/19421

J. Warta, W. Priatna, and T. S. Lestari, “Smart Power Monitoring System untung CCTV menggunakan Internet of Thing,” J. Sistim Inf. dan Teknol., Vol. 5, No. 1, pp. 145–150, 2023, DOI: 10.37034/jsisfotek.v5i1.253.

H. A. A. Sakti and Haniyah, “Pelaksanaan Sistem Electronic Traffic Law Enforcement (E-Tle) menggunakan Pengawasan CCTV Lalu Lintas dalam Upaya Penertiban Pengguna Jalan di Kota Surabaya Pusat,” J. Penelit. Ilmu-Ilmu Sos., Vol. 1, No. 7, pp. 140–147, 2024, DOI: https://doi.org/10.5281/zenodo.10728930.

B. F. Setiawan, V. K. S. Rizal, and W. Mahendra, “Strategi Kebijakan Pemerintah Provinsi DKI Jakarta dalam menanggulangi Tantangan Transportasi Perkotaan,” JOPPAS J. Public Policy Adm., Vol. 5, No. 2, pp. 145–156, 2024, DOI: s://doi.org/10.31539/joppas.v5i2.8298.

D. A. Rizal, M. Usman, A. Ratih, N. Aida, and H. Wahyudi, “Komparasi Pengaruh Indeks Kemahalan Konstruksi dan Jumlah Kendaraan Bermotor terhadap Kemantapan Jalan Nasional di Kawasan Timur dan Barat Indonesia,” J. Ekon. Revolusioner, Vol. 8, No. 3, pp. 15–23, 2025, [Online]. Available: https://eco.ojs.co.id/index.php/jer/article/view/1124

M. A. Conceição et al., “The Effect of Transport Infrastructure, Congestion and Reliability on Mental Wellbeing: A Systematic Review of Empirical Studies,” Transp. Rev., Vol. 43, No. 2, pp. 264–302, 2023, DOI: 10.1080/01441647.2022.2100943.

G. Sun, R. Q. Id, Y. Liu, and F. Xu, “A Dynamic Traffic Signal Scheduling System based on Improved Greedy Algorithm,” pp. 1–22, 2024, DOI: 10.1371/journal.pone.0298417.

L. B. Said and R. A. Saraswati, “Optimasi Sistem Transportasi Perkotaan untuk mereduksi Kemacetan menggunakan Model Simulasi Lalu Lintas,” Syntax Lit. J. Ilm. Indones., Vol. 10, No. 3, pp. 1–23, 2025, DOI: 0.36418/syntax-literate.v10i3.57899.

V. Pantovi and M. Jovanovi, “Dynamic Traffic Flow Optimization using Reinforcement Learning and Predictive Analytics : A Sustainable Approach to Improving Urban Mobility in the City of Belgrade,” sustainability, Vol. 17, No. 8, p. 3383, 2025, DOI: https://doi.org/10.3390/su17083383.

D. Waskito, D. F. Syarifah, and R. A. Aprilianto, “Comparison of the use of YOLOv11 Variations in the Empty Parking Spaces Detection System,” Sainteknol, Vol. 23, No. 1, pp. 1–10, 2025, DOI: https://doi.org/10.15294/sainteknol.v23i1.20014.

J. Zophie and H. H. Triharminto, “Implemetasi Algoritma You Only Look Once ( YOLO ) menggunakan Web Camera untuk Mendeteksi Objek Statis dan Dinamis Implementation of You Only Look Once ( YOLO ) Algorithm using Web Camera for Static dan Dinamic Object Detection,” J. TNI Angkatan Udar., Vol. 1, No. 1, pp. 98–109, 2022, [Online]. Available: https://e-jurnal.tni-au.mil.id/index.php/jpb/article/download/50/44/174

D. N. Afni, F. Juwita, A. K. Prikurnia, and I. Y. Putri, “Analisis Simpang Tak Bersinyal di Jalan Ahmad Yani - Jalan Raden Intan Gadingrejo menggunakan PKJI 2023 Analysis of the Non-Signalized Intersection on Jalan Ahmad Yani - Jalan Raden Intan Gadingrejo using PKJI 2023,” J. Tek. Sains, Vol. 08, No. 02, pp. 135–142, 2023, DOI: https://doi.org/10.24967/teksis.v8i2.2706.

A. Renninger, S. A. Noman, T. Atkison, and J. S. Computer, “Live Intersection Data Acquisition for Traffic Simulators (LIDATS),” Sensors, Vol. 24, No. 11, p. 3392, 2024, DOI: https://doi.org/10.3390/s24113392.

T. D. Chala and L. T. Kóczy, “Intelligent Fuzzy Traffic Signal Control System for Complex Intersections using Fuzzy Rule Base Reduction,” Symmetry (Basel)., Vol. 16, No. 9, pp. 1–24, 2024, DOI: https://doi.org/10.3390/sym16091177.

M. Esmaeili, A. Anjomshoae, N. Shahsavari-pour, and P. Srisurin, “Multimodal Transportation an Optimization Similarity Fuzzy Inference Method for Traffic Signal Control at an Isolated Intersection,” Multimodal Transp., Vol. 4, No. 4, p. 100234, 2025, DOI: 10.1016/j.multra.2025.100234.

O. Alzamzami, Z. Alsaggaf, R. Almalki, R. Alghamdi, and A. Babour, “Passable : An Intelligent Traffic Light System with Integrated Incident Detection and Vehicle Alerting,” Sensors, Vol. 25, No. 18, pp. 1–38, 2025, DOI: https://doi.org/10.3390/s25185760.

A. Agrahari, M. M. Dhabu, P. S. Deshpande, A. Tiwari, M. A. Baig, and A. D. Sawarkar, “Artificial Intelligence-based Adaptive Traffic Signal Control System : A Comprehensive Review,” electronics, Vol. 13, No. 19, pp. 1–23, 2024, DOI: https://doi.org/10.3390/electronics13193875.

C. Niu and K. Li, “Traffic Light Detection and Recognition Method based on YOLOv5s and AlexNet,” Appl. SCI., Vol. 12, No. 21, pp. 1–18, 2022, DOI: 10.3390/app122110808.

B. Kamasetty, M. Renduchintala, L. L. Shetty, S. Chandarshekar, and R. Shettar, “Design and Development of Portable Smart Traffic Signaling System with Cloud-Artificial Intelligence Enablement,” Indones. J. Electr. Eng. Comput. SCI., Vol. 26, No. 1, pp. 116–126, 2022, DOI: 10.11591/ijeecs.v26.i1.pp116-126.

J. Moreno-Malo, J. L. Posadas-Yagüe, J. C. Cano, C. T. Calafate, J. A. Conejero, and J. L. Poza-Lujan, “Improving Traffic Light Systems using Deep Q-Networks,” Expert Syst. Appl., Vol. 252, No. PB, p. 124178, 2024, DOI: 10.1016/j.eswa.2024.124178.

M. Al-Momin, M. K. Alkhafaji, and M. M. H. Al-Musawi, “Traffic Flow Measurement for Smart Traffic Light System Design,” Telkomnika (Telecommunication Comput. Electron. Control., Vol. 21, No. 4, pp. 858–863, 2023, DOI: 10.12928/TELKOMNIKA.v21i4.24706.

L. A. Indriani, S. R. Gunawan, Rendi, D. D. Permadi, and U. S. Saputri, “Performance Analysis of Three-Armed Intersection Capacity on Jalan Raya Sukabumi-Cisaat and Jalan Cibaraja,” in Proceedings of the International Conference on Consumer Technology and Engineering Innovation (ICONTENTION 2023), Nanyang Ave: Atlantis Press International BV, 2024, pp. 144–150. DOI: 10.2991/978-94-6463-406-8_25.

Z. Tian, F. Yang, L. Yang, Y. Wu, J. Chen, and P. Qian, “An Optimized YOLOv11 Framework for the Efficient Multi-Category Defect Detection of Concrete Surface,” Sensors, Vol. 25, No. 5, p. 1291, 2025, DOI: https://doi.org/10.3390/s25051291.




DOI: https://doi.org/10.32520/stmsi.v15i1.5865

Article Metrics

Abstract view : 5 times
PDF - 1 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.