Optimization of the Linear Regression Algorithm using GridSearchCV for Rice Crop Production Prediction

Imel Imel, Norhikmah M.Kom (SCOPUS ID: 57216417658), Irma Rofni Wulandari, Ali Mustofa, Niken Larasati, subektiningsih subektiningsih

Abstract


Rice production in Central Java Province fluctuates annually, affecting food security and agricultural output distribution. Therefore, accurate prediction methods are essential to assist stakeholders in agricultural planning and strategic decision-making. This study applies the Linear Regression algorithm to predict rice production based on historical data from 2014 to 2023 obtained from the official website of the Central Java Provincial Agriculture and Plantation Office. The model is developed using multiple linear regression with variables including planted area, harvested area, and productivity. The novelty of this study lies in the structured application of hyperparameter tuning using GridSearchCV to optimize Linear Regression performance, as well as the integration of a preprocessing pipeline based on data distribution stabilization to improve accuracy and model generalization. The research process includes data collection, preprocessing, modeling, optimization, model evaluation, and deployment as a web-based application using Streamlit Cloud. GridSearchCV optimization results indicate a cross-validation accuracy of 98.26%, confirming the model’s strong predictive capability. Model evaluation shows an R² value of 0.9754, with MAE of 0.0957, MSE of 0.0307, and RMSE of 0.1753, indicating low prediction errors and stable model performance. The optimized model is implemented as a web application via Streamlit Cloud, enabling direct use by end-users. For future research, it is recommended to incorporate additional variables such as rainfall, temperature, and rice variety, or to compare performance with other algorithms such as Random Forest, Support Vector Regression, or Long Short-Term Memory (LSTM) to further enhance prediction accuracy.

Keywords


hyperparameter tuning, linear regression, machine learning, model evaluation, rice production prediction, streamlit cloud

Full Text:

PDF

References


Subagprogram, “Data Series Tanaman Pangan Jawa Tengah 1998-2022,” Data Jateng Prov. Accessed: Jan. 03, 2025. [Online]. Available: https://data.jatengprov.go.id/dataset/data-series-tanaman-pangan-jawa-tengah

BPS, “Luas Panen dan Produksi Padi di Provinsi Jawa Tengah Tahun 2023 (Angka Tetap), ,” Badan Pusat Stattistik Provinsi Jawa Tengah. Accessed: Jan. 03, 2025. [Online]. Available: https://jateng.bps.go.id/id/pressrelease/2024/03/01/1528/luas-panen-dan-produksi-padi-di-provinsi-jawa-tengah-tahun-2023--angka-tetap-.html

BPS, “Luas Panen, Produksi, dan Produktivitas Padi Menurut Kabupaten/Kota di Provinsi Jawa Tengah (Kuintal/Hektar), 2023,” Badan Pusat Stattistik Provinsi Jawa Tengah. Accessed: Jan. 03, 2025. [Online]. Available: https://jateng.bps.go.id/id/statistics-table/2/NDYzIzI=/luas-panen--produksi--dan-produktivitas-padi-menurut-kabupaten-kota-di-provinsi-jawa-tengah.html

E. Triyanto, H. Sismoro, and A. D. Laksito, “Implementasi Algoritma Regresi Linear Berganda untuk memprediksi Produksi Padi di Kabupaten Bantul,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, Vol. 4, No. 2, pp. 66–75, 2019, DOI: 10.36341/rabit.v4i2.666.

R. Andia, K. Kaslani, S. Eka Permana, and T. Handayani, “Peramalan Hasil Panen Padi Kabupaten Cirebon menggunakan Algoritma Regresi Linear Berganda,” JATI (Jurnal Mahasiswa Teknik Informatika), Vol. 8, No. 1, pp. 738–747, 2024, DOI: 10.36040/jati.v8i1.8446.

J. Hutahaean, D. Yusup, and Purwantoro, “Perbandingan Metode Linear Regression, Random Forest & K-Nearest Neighbor untuk Prediksi Produksi Hasil Panen Padi di Provinsi Jawa Barat,” Jurnal Mahasiswa Teknik Informatika (JATI), Vol. 8, No. 3, Jun. 2024, DOI: https://doi.org/10.36040/jati.v8i3.9821.

A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” Jurnal Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023, doi: 10.24246/juses.v6i1p34-43.

R. Norhikmah, “Prediksi Kegagalan Siswa dalam Data Mining dengan menggunakan Metode Naïve Bayes,” Terakreditasi DIKTI, Vol. 3, No. 1, pp. 42–46, 2019, DOI: 10.13140/RG.2.2.22726.42560.

F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Pradiksi Penjualan pada Usaha Mikro, Kecil dan Menengah,” Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, Vol. 10, No. 1, pp. 23–32, 2021.

H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), Vol. 8, No. 4, p. 364, 2019, DOI: 10.22146/jnteti.v8i4.537.

M. Adin Musababa, “Implementasi Algoritma Linear Regression untuk Prediksi Produksi Tanaman Padi di Kabupaten Grobogan,” Data Sciences Indonesia (DSI), Vol. 3, No. 2, pp. 68–78, 2024, DOI: 10.47709/dsi.v3i2.3118.

A. H. Pradhana, M. Irfa, A. Ali, A. Ristyawan, and E. Daniati, “Penerapan Regresi Linear menggunakan RapidMiner untuk memprediksi Penjualan dan Persediaan,” Semnas Inotek, Vol. 8, pp. 291–297, 2024.

Diyanti, Martanto, and A. Bahtiar, “Jurnal Informatika Terpadu Prediksi Hasil Panen Padi Tahun 2023 menggunakan Metode Regresi Linear di Kabupaten Indramayu,” Jurnal Informatika Terpadu, Vol. 9, No. 1, pp. 18–23, 2023, [Online]. Available: https://journal.nurulfikri.ac.id/index.php/JIT

D. Pramesti and Wiga Maulana Baihaqi, “Perbandingan Prediksi Jumlah Transaksi Ojek Online menggunakan Regresi Linier dan Random Forest,” Generation Journal, Vol. 7, No. 3, pp. 21–30, 2023, DOI: 10.29407/gj.v7i3.20676.

F. Jamiluddin, S. Faisal, S. A. P. Lestari, and A. Fauzi, “Implementasi Hyperparameter Tuning GridSearchCV pada Prediksi Produksi Padi menggunakan Algoritma Linear Regresi,” Journal of Information System Research (JOSH), Vol. 6, No. 1, pp. 480–488, 2024, DOI: 10.47065/josh.v6i1.5930.

W. Nugraha and A. Sasongko, “Hyperparameter Tuning on Classification Algorithm with Grid Search,” Sistemasi, Vol. 11, No. 2, p. 391, 2022, DOI: 10.32520/stmsi.v11i2.1750.

I. Hakim and T. Afriliansyah, “Implementasi Algoritma Komputasi Linear Regression untuk Optimasi Prediksi Hasil Pertanian,” KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), Vol. 5, No. 3, pp. 1423–1434, 2024.

E. P. Yudha, Arif Rohmadi, and Agung Teguh Setyadi, “Sistem Prediksi Produksi Padi di Sumatera menggunakan Regresi Linear,” Jurnal Manajemen Informatika dan Sistem Informasi, Vol. 8, No. 1, pp. 81–89, 2025, DOI: 10.36595/misi.v8i1.1411.

E. M. Pusung and I. N. Dewi, “Optimasi RoBERTa dengan Hyperparameter Tuning untuk Deteksi Emosi berbasis Teks,” Jurnal Nasional Teknologi dan Sistem Informasi, Vol. 10, No. 3, pp. 240–248, 2025, DOI: 10.25077/teknosi.v10i3.2024.240-248.

K. Sofi, A. S. Sunge, S. R. Riady, and A. Z. Kamalia, “Perbandingan Algoritma Linear Regression, LSTM, dan Gru dalam memprediksi Harga Saham dengan Model Time Series,” Seminastika, Vol. 3, No. 1, pp. 39–46, 2021, DOI: 10.47002/seminastika.v3i1.275.

M. K. B. Seran, F. Tedy, Ign. P. A. N. Samane, P. Batarius, P. A. Nani, and A. A. J. Sinlae, “Analisis Data Pertanian Tanaman Pangan untuk memprediksi Hasil Panen di Kabupaten Malaka menggunakan Metode Multiple Linear Regression,” KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, Vol. 4, No. 1, pp. 209–221, 2024, DOI: 10.24002/konstelasi.v4i1.8970.

I. Muhamad Malik Matin, “Hyperparameter Tuning menggunakan GridsearchCV pada Random Forest untuk Deteksi Malware,” Multinetics, Vol. 9, No. 1, pp. 43–50, 2023, DOI: 10.32722/multinetics.v9i1.5578.

U. Lathifah and R. Danar Dana, “Implementasi Metode Linear Regression untuk Prediksi Harga Properti Real Estate menggunakan Rapidminer,” JATI (Jurnal Mahasiswa Teknik Informatika), Vol. 8, No. 1, pp. 1129–1137, 2024, DOI: 10.36040/jati.v8i1.8919.

H. H. Nuha, “Mean Squared Error ( MSE ) dan Penggunaannya,” Social Science Research Network, Vol. 52, pp. 2021–2022, 2023.

M. A. Dewi, P. T. L., Dewanta, F., Nugroho, “Implementasi Machine Learning Model Deployment pada Website Pemantauan Kondisi Sungai Citarum menggunakan Platform-As-A-Service,” e-Proceeding of Engineering, Vol. 8, No. 6, pp. 3064–3074, 2022.

G. A. Syafarina and Zaenuddin, “Implementasi Framework Streamlit sebagai Prediksi Harga Jual Rumah dengan Linear Regresi,” Metik Jurnal, Vol. 7, pp. 121–125, 2023, DOI: 10.47002/metik.v7i2.680.




DOI: https://doi.org/10.32520/stmsi.v15i1.5877

Article Metrics

Abstract view : 9 times
PDF - 3 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.